Skip to main content

Advertisement

Log in

Role of Chinese Herbal Medicines in Regulation of Energy Metabolism in Treating Cardiovascular Diseases

  • Review
  • Published:
Chinese Journal of Integrative Medicine Aims and scope Submit manuscript

Abstract

Recently, studying myocardial energy metabolism pathways or improving myocardial metabolism through drugs is another effective strategy for treating ischemic heart disease. Many active components of Chinese herbal medicines (CHMs) have been found to modulate energy metabolism in myocardial cells, cerebral vascular cells, endothelial cells and tumour cells. This paper reviews the advances in studies on the active components of CHMs that modulating energy metabolism in treating cardiovascular diseases over the past five years.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. GBD 2016 Causes of Death Collaborators. Global, regional, and national age-sex specific mortality for 264 causes of death, 1980–2016: a systematic analysis for the Global Burden of Disease Study 2016. Lancet 2017;390:1151–1210.

    Article  Google Scholar 

  2. Feigin VL, Lawes CM, Bennett DA, Barker-Collo SL, Parag V. Worldwide stroke incidence and early case fatality reported in 56 population-based studies: a systematic review. Lancet Neurol 2009;8:355–369.

    Article  PubMed  Google Scholar 

  3. Mensah GA, Roth GA, Sampson UK, Moran AE, Feigin VL, Forouzanfar MH, et al. Mortality from cardiovascular diseases in sub-Saharan Africa, 1990–2013: a systematic analysis of data from the Global Burden of Disease Study 2013. Cardiovasc J Afr 2015;26:S6–S10.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, et al. Heart disease and stroke statistics—2017 update: a report from the American Heart Association. Circulation 2017;135:e146–e603.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Tao L, Bei Y, Lin S, Zhang H, Zhou Y, Jiang J, et al. Exercise training protects against acute myocardial infarction via improving myocardial energy metabolism and mitochondrial biogenesis. Cell Physiol Biochem 2015;37:162–175.

    Article  CAS  PubMed  Google Scholar 

  6. Gorbunova ML, Vilkova AV. Assessment of efficacy and safety of metabolic therapy with trimetazidine MB in patients with ischemic heart disease and chronic heart failure. Kardiologiia 2016;56:67–72.

    Article  CAS  PubMed  Google Scholar 

  7. Cheng ML, Wang CH, Shiao MS, Liu MH, Huang YY, Huang CY, et al. Metabolic disturbances identified in plasma are associated with outcomes in patients with heart failure: diagnostic and prognostic value of metabolomics. J Am Coll Cardiol 2015;65:1509–1520.

    Article  CAS  PubMed  Google Scholar 

  8. Hunter WG, Kelly JP, McGarrah RW 3rd, Kraus WE, Shah SH. Metabolic dysfunction in heart failure: diagnostic, prognostic, and pathophysiologic insights from metabolomic profiling. Curr Heart Fail Rep 2016;13:119–131.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Guo J, Yong Y, Aa J, Cao B, Sun R, Yu X, et al. Compound Danshen Dripping Pills modulate the perturbed energy metabolism in a rat model of acute myocardial ischemia. Sci Rep 2016;6:37919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang JR, Zhou H, Yi XQ, Jiang ZH, Liu L. Total ginsenosides of Radix Ginseng modulates tricarboxylic acid cycle protein expression to enhance cardiac energy metabolism in ischemic rat heart tissues. Molecules 2012;17:12746–12757.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Miri R, Sajjadieh A, Parsamahjoob M, Hajibaratali B, Shekarchizadeh M, Kolahi AA, et al. Relationship between metabolic syndrome and angiographic severity of coronary artery disease. ARYA Atheroscler 2016;12:220–225.

    PubMed  PubMed Central  Google Scholar 

  12. Kolwicz SC Jr, Tian R. Glucose metabolism and cardiac hypertrophy. Cardiovasc Res 2011;90:194–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhan S, Fan X, Zhang F, Wang Y, Kang L, Li Z. A proteomic study of Shengmai Injection’s mechanism on preventing cardiac ischemia-reperfusion injury via energy metabolism modulation. Mol Biosyst 2015;11:540–548.

    Article  CAS  PubMed  Google Scholar 

  14. Schramm A, Hamburger M. Gram-scale purification of dehydroevodiamine from Evodia rutaecarpa fruits, and a procedure for selective removal of quaternary indoloquinazoline alkaloids from Evodia extracts. Fitoterapia 2014;94:127–133.

    Article  CAS  PubMed  Google Scholar 

  15. Li YJ, Zhang F, Gong QH, Wu Q, Yu LM, Sun AS. Rutaecarpine inhibits angiotensin II-induced proliferation in rat vascular smooth muscle cells. Chin J Integr Med 2014;20:682–687.

    Article  CAS  PubMed  Google Scholar 

  16. Yarosh DB, Galvin JW, Nay SL, Pena AV, Canning MT, Brown DA. Anti-inflammatory activity in skin by biomimetic of Evodia rutaecarpa extract from traditional Chinese medicine. J Dermatol Sci 2006;42:13–21.

    Article  PubMed  Google Scholar 

  17. Heo SK, Yun HJ, Yi HS, Noh EK, Park SD. Evodiamine and rutaecarpine inhibit migration by LIGHT via suppression of NADPH oxidase activation. J Cell Biochem 2009;107:123–133.

    Article  CAS  PubMed  Google Scholar 

  18. Jia S, Hu C. Pharmacological effects of rutaecarpine as a cardiovascular protective agent. Molecules 2010;15:1873–1881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Son J K, Chang H W, Jahng Y. Progress in studies on rutaecarpine. II.—Synthesis and structure-biological activity relationships. Molecules 2015;20:10800–10821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Xue H, Cheng Y, Wang X, Yue Y, Zhang W, Li X. Rutaecarpine and evodiamine selected as beta1-AR inhibitor candidates using beta1-AR/CMC-offline-UPLC/MS prevent cardiac ischemia-reperfusion injury via energy modulation. J Pharm Biomed Anal 2015;115:307–314.

    Article  CAS  PubMed  Google Scholar 

  21. Cao X, Nakamura Y, Wada T, Kishie T, Enkhsaikhan A, Izumi-Nakaseko H, et al. Assessment of the anti-anginal effect of tetramethylpyrazine using vasopressin-induced angina model rats. Biol Pharm Bull 2016;39:1370–1373.

    Article  CAS  PubMed  Google Scholar 

  22. Qian W, Xiong X, Fang Z, Lu H, Wang Z. Protective effect of tetramethylpyrazine on myocardial ischemia-reperfusion injury. Evid Based Complement Altern Med 2014;2014:107501.

    Article  Google Scholar 

  23. Wang WT, Wang FY, Wang W. Effect of ligustrazine and L-arginine on function of mitochondria in myocardial cell in the reperfusion injury afer myocardial ischemia in rabbits. Chin J Arteriosclerosis (Chin) 2006;14:955.

    Google Scholar 

  24. Zhu HB, Wang MM, Zhang B. Effect of myocardial ischemia reperfusion in rabbits on Na+-K+-ATPase and protective effect of ligustrazine pretreatment. Hubei J Tradit Chin Med (Chin) 2010;32:5–6.

    Google Scholar 

  25. Shi DZ, Chen KJ, Zhong P. The effects of ligustrazine on synthesis of protein and RNA, and NOS gene expression in cultural myocardial cells with hypoxia and lack of sugar. Chin Pharm J (Chin) 1998;33:724–726.

    CAS  Google Scholar 

  26. Wan FS, Liu B, Zhao XM. Effects of ligustrazine on respiratory enzymes in the myocardial mitochondria of the ischemia-reperfusion rats. Chin J Pathophysiol (Chin) 2001;17:58.

    CAS  Google Scholar 

  27. Li Y, Wan FS, Wan YF. Protective effects of ligustrazine against myocardial ischemia injury of rat. Chin Tradit Patent Med (Chin) 2003;25:646–648.

    Google Scholar 

  28. Luo H, Sun C, Sun Y, Wu Q, Li Y, Song J, et al. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. BMC Genomics 2011;12(Suppl 5):S5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu Y, Zhang HG, Jia Y, Li XH. Panax notoginseng saponins attenuate atherogenesis accelerated by zymosan in rabbits. Biol Pharm Bull 2010;33:1324–1330.

    Article  CAS  PubMed  Google Scholar 

  30. Hall AM, Wiczer BM, Herrmann T, Stremmel W, Bernlohr DA. Enzymatic properties of purified murine fatty acid transport protein 4 and analysis of acyl-CoA synthetase activities in tissues from FATP4 null mice. J Biol Chem 2005;280:11948–11954.

    Article  CAS  PubMed  Google Scholar 

  31. Liu J, Wang Y, Qiu L, Yu Y, Wang C. Saponins of Panax notoginseng: chemistry, cellular targets and therapeutic opportunities in cardiovascular diseases. Expert Opin Invest Drugs 2014;23:523–539.

    Article  CAS  Google Scholar 

  32. Zhou GJ, Wang W, Xie XM, Qin MJ, Kuai BK, Zhou TS. Post-harvest induced production of salvianolic acids and significant promotion of antioxidant properties in roots of Salvia miltiorrhiza (Danshen). Molecules 2014;19:7207–7222.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Liu CH, Shyu WC, Fu RH, Huang SJ, Chang CH, Huang YC, et al. Salvianolic acid B maintained stem cell pluripotency and increased proliferation rate by activating Jak2-Stat3 combined with EGFR-Erk1/2 pathways. Cell Transplant 2014;23:657–668.

    Article  PubMed  Google Scholar 

  34. Xu H, Wang D, Peng C, Huang X, Ou M, Wang N, et al. Rabbit sera containing compound Danshen Dripping Pill attenuate leukocytes adhesion to TNF-alpha-activated human umbilical vein endothelial cells by suppressing endothelial ICAM-1 and VCAM-1 expression through NF-kappaB signaling pathway. J Cardiovasc Pharmacol 2014;63:323–332.

    Article  CAS  PubMed  Google Scholar 

  35. Mu F, Duan J, Bian H, Zhai X, Shang P, Lin R, et al. Metabonomic strategy for the evaluation of Chinese medicine Salvia miltiorrhiza and Dalbergia odorifera Interfering with myocardial ischemia/reperfusion injury in rats. Rejuvenation Res 2017;20:263–277.

    Article  CAS  PubMed  Google Scholar 

  36. Chang H, Wang Q, Shi T, Huo K, Li C, Zhang Q, et al. Effect of Danqi Pill on PPARalpha, lipid disorders and arachidonic acid pathway in rat model of coronary heart disease. BMC Complement Alternat Med 2016;16:103.

    Article  CAS  Google Scholar 

  37. Rogers C, Bush N. Heart failure: pathophysiology, diagnosis, medical treatment guidelines, and nursing management. Nurs Clin North Am 2015;50:787–799.

    Article  PubMed  Google Scholar 

  38. Heggermont WA, Papageorgiou AP, Heymans S, van Bilsen M. Metabolic support for the heart: complementary therapy for heart failure? Eur J Heart Fail 2016;18:1420–1429.

    Article  PubMed  Google Scholar 

  39. Siddiqi N, Singh S, Beadle R, Dawson D, Frenneaux M. Cardiac metabolism in hypertrophy and heart failure: implications for therapy. Heart Fail Rev 2013;18:595–606.

    Article  CAS  PubMed  Google Scholar 

  40. Ai F, Chen M, Yu B, Yang Y, Xu G, Gui F, et al. Puerarin accelerates cardiac angiogenesis and improves cardiac function of myocardial infarction by upregulating VEGFA, ang-I and ang-II in rats. Int J C lin Exp Med 2015;8:20821–20828.

    CAS  Google Scholar 

  41. Liu B, Zhao C, Li H, Chen X, Ding Y, Xu S. Puerarin protects against heart failure induced by pressure overload through mitigation of ferroptosis. Biochem Biophys Res Commun 2018;497:233–240.

    Article  CAS  PubMed  Google Scholar 

  42. Xu H, Zhao M, Liang S, Huang Q, Xiao Y, Ye L, et al. The effects of puerarin on rat ventricular myocytes and the potential mechanism. Sci Rep 2016;6:35475.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Fang DL, Chen Y, Xu B, Ren K, He ZY, He LL, et al. Development of lipid-shell and polymer core nanoparticles with water-soluble salidroside for anti-cancer therapy. Int J Mol Sci 2014;15:3373–3388.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Zhu L, Wei T, Gao J, Chang X, He H, Luo F, et al. The cardioprotective effect of salidroside against myocardial ischemia reperfusion injury in rats by inhibiting apoptosis and inflammation. Apoptosis 2015;20:1433–1443.

    Article  CAS  PubMed  Google Scholar 

  45. Zhong X, Lin R, Li Z, Mao J, Chen L. Effects of salidroside on cobalt chloride-induced hypoxia damage and mTOR signaling repression in PC12 cells. Biol Pharm Bull 2014;37:1199–1206.

    Article  CAS  PubMed  Google Scholar 

  46. Lai MC, Lin JG, Pai PY, Lai MH, Lin YM, Yeh YL, et al. Protective effect of salidroside on cardiac apoptosis in mice with chronic intermittent hypoxia. Int J Cardiol 2014;174:565–573.

    Article  PubMed  Google Scholar 

  47. Qian EW, Ge DT, Kong SK. Salidroside promotes erythropoiesis and protects erythroblasts against oxidative stress by up-regulating glutathione peroxidase and thioredoxin. J Ethnopharmacol 2011;133:308–314.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang J, Liu A, Hou R, Zhang J, Jia X, Jiang W, et al. Salidroside protects cardiomyocyte against hypoxia-induced death: a HIF-1alpha-activated and VEGF-mediated pathway. Eur J Pharmacol 2009;607:6–14.

    Article  CAS  PubMed  Google Scholar 

  49. Xu ZW, Chen X, Jin XH, Meng XY, Zhou X, Fan FX, et al. SILAC-based proteomic analysis reveals that salidroside antagonizes cobalt chloride-induced hypoxic effects by restoring the tricarboxylic acid cycle in cardiomyocytes. J Proteomics 2016;130:211–220.

    Article  CAS  PubMed  Google Scholar 

  50. Yang L, Yu QT, Ge YZ, Zhang WS, Fan Y, Ma CW, et al. Distinct urine metabolome after Asian ginseng and American ginseng intervention based on GC-MS metabolomics approach. Sci Rep 2016;6:39045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Li YH, Li YY, Fan GW, Yu JH, Duan ZZ, Wang LY, et al. Cardioprotection of ginsenoside Rb1 against ischemia/reperfusion injury is associated with mitochondrial permeability transition pore opening inhibition. Chin J Integr Med 2016 Jan 6. Epnb aheadof print.

    Google Scholar 

  52. Wang XF, Liu XJ, Zhou QM, Du J, Zhang TL, Lu YY, et al. Ginsenoside Rb1 reduces isoproterenol-induced cardiomyocytes apoptosis in vitro and in vivo. Evid Based Complement Alternat Med 2013;2013:454389.

    PubMed  PubMed Central  Google Scholar 

  53. Jiang QS, Huang XN, Yang GZ, Jiang XY, Zhou QX. Inhibitory effect of ginsenoside Rb1 on calcineurin signal pathway in cardiomyocyte hypertrophy induced by prostaglandin F2alpha. Acta Pharmacol Sin 2007;28:1149–1154.

    Article  CAS  PubMed  Google Scholar 

  54. Zheng X, Wang S, Zou X, Jing Y, Yang R, Li S, et al. Ginsenoside Rb1 improves cardiac function and remodeling in heart failure. Exp Anim 2017;66:217–228.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Fu J, Wang Z, Huang L, Zheng S, Wang D, Chen S, et al. Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytother Res 2014;28:1275–1283.

    Article  CAS  PubMed  Google Scholar 

  56. Ren S, Zhang H, Mu Y, Sun M, Liu P. Pharmacological effects of astragaloside IV: a literature review. J Tradit Chin Med 2013;33:413–416.

    Article  PubMed  Google Scholar 

  57. Guan FY, Yang SJ, Liu J, Yang SR. Effect of astragaloside IV against rat myocardial cell apoptosis induced by oxidative stress via mitochondrial ATP-sensitive potassium channels. Mol Med Rep 2015;12:371–376.

    Article  CAS  PubMed  Google Scholar 

  58. Xu C, Tang F, Lu M, Yang J, Han R, Mei M, et al. Pretreatment with astragaloside IV protects human umbilical vein endothelial cells from hydrogen peroxide induced oxidative stress and cell dysfunction via inhibiting eNOS uncoupling and NADPH oxidase - ROS - NF-kappaB pathway. Can J Physiol Pharmacol 2016;1–9.

    Google Scholar 

  59. Jiang XG, Sun K, Liu YY, Yan L, Wang MX, Fan JY, et al. Astragaloside IV ameliorates 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis implicating regulation of energy metabolism. Sci Rep 2017;7:41832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Dong Z, Zhao P, Xu M, Zhang C, Guo W, Chen H, et al. Astragaloside IV alleviates heart failure via activating PPARalpha to switch glycolysis to fatty acid beta-oxidation. Sci Rep 2017;7:2691.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Zhang J, Wei C, Wang H, Tang S, Jia Z, Wang L, et al. Protective effect of Qiliqiangxin Capsule on energy metabolism and myocardial mitochondria in pressure overload heart failure rats. Evid Based Complement Alternat Med 2013;2013:378298.

    PubMed  PubMed Central  Google Scholar 

  62. Wang J, Li Z, Wang Y, Zhang J, Zhao W, Fu M, et al. Qiliqiangxin enhances cardiac glucose metabolism and improves diastolic function in spontaneously hypertensive rats. Evid Based Complement Alternat Med 2017;2017:3197320.

    PubMed  PubMed Central  Google Scholar 

  63. Cui X, Zhang J, Li Y, Sun Y, Cao J, Zhao M, et al. Effects of Qili Qiangxin Capsule on AQP2, V2R, and AT1R in rats with chronic heart failure. Evid Based Complement Alternat Med 2015;2015:639450.

    PubMed  PubMed Central  Google Scholar 

  64. Seto SW, Kiat H, Lee SM, Bensoussan A, Sun YT, Hoi MP, et al. Zebrafish models of cardiovascular diseases and their applications in herbal medicine research. Eur J Pharmacol 2015;768:77–86.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru-xiu Liu.

Additional information

Supported by the National Natural Science Foundation of China (No. 81873293)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, J., Guan, Xk. & Liu, Rx. Role of Chinese Herbal Medicines in Regulation of Energy Metabolism in Treating Cardiovascular Diseases. Chin. J. Integr. Med. 25, 307–315 (2019). https://doi.org/10.1007/s11655-018-2943-5

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11655-018-2943-5

Keywords

Navigation