Skip to main content
Log in

Online Magnetresonanztomographie-geführte und adaptive Strahlentherapie

Neue Möglichkeiten durch technologischen Fortschritt

Online MR-guided and adaptive radiotherapy

New possibilities through technological progress

  • Topic
  • Published:
best practice onkologie Aims and scope

Zusammenfassung

Die Strahlentherapie ist einer der Eckpfeiler in der Behandlung von onkologischen Erkrankungen mit der stetigen Herausforderung, die erforderliche Dosis in möglichst kurzer Zeit mit maximaler Präzision auf die gewünschten Strukturen zu applizieren und die Normalgewebe hierbei bestmöglich zu schonen. Aufgrund der Lagevariabilität von Tumoren und häufiger Tumorschrumpfung im Verlauf der Strahlentherapie ist die adaptive Strahlentherapie, bei welcher während einer Bestrahlungsserie der Bestrahlungsplan kontinuierlich angepasst wird, eine vielversprechende Entwicklung. Mittels MR-Linac-Hybridgeräten, die einen Linearbeschleuniger und einen Magnetresonanztomographen in einem Gerät vereinen, ist nun auch eine online adaptive magnetresonanztomographiebasierte Strahlentherapie möglich. Die Magnetresonanztomographie (MRT) bietet aufgrund des höheren Weichteilkontrasts die Möglichkeit einer präziseren Definition der Zielstrukturen und Risikoorgane und erlaubt es häufig, höhere Dosen auch in der Nähe von kritischen Strukturen applizieren zu können. So kann Patienten eine effektive, gutverträgliche und nichtinvasive Therapie angeboten werden. Häufige Indikationen für die Bestrahlung an einem MR-Linac sind die Behandlung von Lymphknotenmetastasen, die Behandlung des Prostatakarzinoms, insbesondere mittels Ultrahypofraktionierung, sowie die hochdosierte Bestrahlung von Lebermetastasen und des hepatozellulären Karzinoms ohne Anlage von röntgendichten Markern („fiducials“). Bei Patienten mit frühen Rektumkarzinomen wird eine MRT-geführte adaptive Dosiseskalation untersucht. Die MRT-Komponente ermöglicht zudem die Visualisierung funktioneller MRT-Parameter, welche z. B. bei neuartigen innovativen Konzepten in der Behandlung von Kopf-Hals-Tumoren eingesetzt werden.

Abstract

Radiation therapy is one of the cornerstones in the treatment of oncological diseases. It is associated with the constant challenge of applying the dose to the desired structures in the shortest possible time with maximum precision, while sparing normal tissues as much as possible. Due to the variability in tumor location and tumor shrinkage during the course of radiation therapy, adaptive radiation therapy, in which adjustments are made to the original radiation plan during a radiation series, is a promising development. With MR-LINAC hybrid devices, which combine a linear accelerator and an MRI scanner within a single unit, adaptive MR-based online radiotherapy is now possible. MRI offers the possibility to more accurately define target structures and organs at risk due to higher soft tissue contrast, which often enables delivery of higher doses near critical structures. This allows patients to be offered an effective, well-tolerated, personalized, and noninvasive therapy. Common indications for irradiation at an MR-LINAC include treatment of lymph node metastases, treatment of prostate cancer (particularly using ultrahypofractionation), and high-dose irradiation of liver metastases and hepatocellular carcinoma without the need for placement of fiducial markers. MR-guided adaptive dose escalation is currently being investigated in patients with early rectal cancer. Magnetic resonance imaging also allows visualization of functional parameters, which are employed by novel innovative concepts for the treatment of, e.g., head and neck cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Literatur

  1. Bahadoer RR, Dijkstra EA, van Etten B et al (2021) Short-course radiotherapy followed by chemotherapy before total mesorectal excision (TME) versus preoperative chemoradiotherapy, TME, and optional adjuvant chemotherapy in locally advanced rectal cancer (RAPIDO): a randomised, open-label, phase 3 trial. Lancet Oncol 22:29–42

    Article  CAS  PubMed  Google Scholar 

  2. Böke S, Gani C, Thorwarth D et al (2022) MR-geführte Dosiseskalation bei Kopf-Hals-Tumoren. Forum 37:314–317

    Article  Google Scholar 

  3. Boldrini L, Corradini S, Gani C et al (2021) MR-guided radiotherapy for liver malignancies. Front Oncol 11:616027

    Article  PubMed  PubMed Central  Google Scholar 

  4. Bonomo P, Lo Russo M, Nachbar M et al (2021) 1.5 T MR-linac planning study to compare two different strategies of rectal boost irradiation. Clin Transl Radiat Oncol 26:86–91

    Article  PubMed  Google Scholar 

  5. Conroy T, Bosset JF, Etienne PL et al (2021) Neoadjuvant chemotherapy with FOLFIRINOX and preoperative chemoradiotherapy for patients with locally advanced rectal cancer (UNICANCER-PRODIGE 23): a multicentre, randomised, open-label, phase 3 trial. Lancet Oncol 22:702–715

    Article  CAS  PubMed  Google Scholar 

  6. De-Colle C, Nachbar M, Mnnich D et al (2021) Analysis of the electron-stream effect in patients treated with partial breast irradiation using the 1.5 T MR-linear accelerator. Clin Transl Radiat Oncol 27:103–108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Dearnaley D, Syndikus I, Mossop H et al (2016) Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5‑year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol 17:1047–1060

    Article  PubMed  PubMed Central  Google Scholar 

  8. Delaney G, Jacob S, Featherstone C et al (2005) The role of radiotherapy in cancer treatment: estimating optimal utilization from a review of evidence-based clinical guidelines. Cancer 104:1129–1137

    Article  PubMed  Google Scholar 

  9. Gani C, Boeke S, Mcnair H et al (2021) Marker-less online MR-guided stereotactic body radiotherapy of liver metastases at a 1.5 T MR-linac—feasibility, workflow data and patient acceptance. Clin Transl Radiat Oncol 26:55–61

    Article  PubMed  Google Scholar 

  10. Gani C, Russo LM, Boeke S et al (2021) A novel approach for radiotherapy dose escalation in rectal cancer using online MR-guidance and rectal ultrasound gel filling—rationale and first in human. Radiother Oncol 164:37–42

    Article  PubMed  Google Scholar 

  11. Garcia-Aguilar J, Patil S, Gollub MJ et al (2022) Organ preservation in patients with rectal adenocarcinoma treated with total neoadjuvant therapy. J Clin Oncol 40:2546–2556

    Article  CAS  PubMed  Google Scholar 

  12. Glide-Hurst CK, Lee P, Yock AD et al (2021) Adaptive radiation therapy (ART) strategies and technical considerations: a state of the ART review from NRG oncology. Int J Radiat Oncol Biol Phys 109:1054–1075

    Article  PubMed  Google Scholar 

  13. Gomez DR, Blumenschein GR Jr., Lee JJ et al (2016) Local consolidative therapy versus maintenance therapy or observation for patients with oligometastatic non-small-cell lung cancer without progression after first-line systemic therapy: a multicentre, randomised, controlled, phase 2 study. Lancet Oncol 17:1672–1682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Guckenberger M, Lievens Y, Bouma AB et al (2020) Characterisation and classification of oligometastatic disease: a European society for radiotherapy and oncology and European organisation for research and treatment of cancer consensus recommendation. Lancet Oncol 21:e18–e28

    Article  PubMed  Google Scholar 

  15. Hall WA, Small C, Paulson E et al (2021) Magnetic resonance guided radiation therapy for pancreatic adenocarcinoma, advantages, challenges, current approaches, and future directions. Front Oncol 11:628155

    Article  PubMed  PubMed Central  Google Scholar 

  16. Halpern JN (1997) Radiation therapy in skin cancer. A historical perspective and current applications. Dermatol Surg 23:1089–1093

    Article  CAS  PubMed  Google Scholar 

  17. Janssen TM, Aitken K, Alongi F et al (2022) First multicentre experience of SABR for lymph node and liver oligometastatic disease on the unity MR-Linac. Tech Innov Patient Support Radiat Oncol 22:50–54

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kleijnen JJE, van Asselen B, Van den Begin R et al (2019) MRI-based tumor inter-fraction motion statistics for rectal cancer boost radiotherapy. Acta Oncol 58:232–236

    Article  PubMed  Google Scholar 

  19. Klüter S (2019) Technical design and concept of a 0.35 T MR-Linac. Clin Transl Radiat Oncol 18:98–101. https://doi.org/10.1016/j.ctro.2019.04.007

    Article  PubMed  PubMed Central  Google Scholar 

  20. Künzel LA, Nachbar M, Hagmüller M et al (2022) Clinical evaluation of autonomous, unsupervised planning integrated in MR-guided radiotherapy for prostate cancer. Radiother Oncol 168:229–233

    Article  PubMed  Google Scholar 

  21. Künzel LA, Nachbar M, Hagmüller M et al (2021) First experience of autonomous, un-supervised treatment planning integrated in adaptive MR-guided radiotherapy and delivered to a patient with prostate cancer. Radiother Oncol 159:197–201

    Article  PubMed  Google Scholar 

  22. Lagendijk JJ, Raaymakers BW, van Vulpen M (2014) The magnetic resonance imaging-linac system. Semin Radiat Oncol 24:207–209

    Article  PubMed  Google Scholar 

  23. Lambrecht M, Van Calster B, Vandecaveye V et al (2014) Integrating pretreatment diffusion weighted MRI into a multivariable prognostic model for head and neck squamous cell carcinoma. Radiother Oncol 110:429–434

    Article  PubMed  Google Scholar 

  24. Ma TM, Lamb JM, Casado M et al (2021) Magnetic resonance imaging-guided stereotactic body radiotherapy for prostate cancer (mirage): a phase iii randomized trial. BMC Cancer 21:538

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ohri N, Tome WA, Mendez Romero A et al (2021) Local control after stereotactic body radiation therapy for liver tumors. Int J Radiat Oncol Biol Phys 110:188–195

    Article  PubMed  Google Scholar 

  26. Palma DA, Olson R, Harrow S et al (2019) Stereotactic ablative radiotherapy versus standard of care palliative treatment in patients with oligometastatic cancers (SABR-COMET): a randomised, phase 2, open-label trial. Lancet 393:2051–2058

    Article  PubMed  Google Scholar 

  27. Raaymakers BW, Jürgenliemk-Schulz IM, Bol GH et al (2017) First patients treated with a 1.5 T MRI-Linac: clinical proof of concept of a high-precision, high-field MRI guided radiotherapy treatment. Phys Med Biol 62:L41–L50

    Article  CAS  PubMed  Google Scholar 

  28. Raaymakers BW, Raaijmakers AJ, Kotte AN et al (2004) Integrating a MRI scanner with a 6 MV radiotherapy accelerator: dose deposition in a transverse magnetic field. Phys Med Biol 49:4109–4118

    Article  CAS  PubMed  Google Scholar 

  29. Tanyi JA, He T, Summers PA et al (2010) Assessment of planning target volume margins for intensity-modulated radiotherapy of the prostate gland: role of daily inter- and intrafraction motion. Int J Radiat Oncol Biol Phys 78:1579–1585

    Article  PubMed  Google Scholar 

  30. Thorwarth D, Ege M, Nachbar M et al (2020) Quantitative magnetic resonance imaging on hybrid magnetic resonance linear accelerators: perspective on technical and clinical validation. Phys Imaging Radiat Oncol 16:69–73

    Article  PubMed  PubMed Central  Google Scholar 

  31. Tree AC, Ostler P, van der Voet H et al (2022) Intensity-modulated radiotherapy versus stereotactic body radiotherapy for prostate cancer (PACE-B): 2‑year toxicity results from an open-label, randomised, phase 3, non-inferiority trial. Lancet Oncol 23:1308–1320

    Article  PubMed  Google Scholar 

  32. Vandecaveye V, Dirix P, De Keyzer F et al (2010) Predictive value of diffusion-weighted magnetic resonance imaging during chemoradiotherapy for head and neck squamous cell carcinoma. Eur Radiol 20:1703–1714

    Article  PubMed  Google Scholar 

  33. Weykamp F, Hoegen P, Kluter S et al (2021) Magnetic resonance-guided stereotactic body radiotherapy of liver tumors: initial clinical experience and patient-reported outcomes. Front Oncol 11:610637

    Article  PubMed  PubMed Central  Google Scholar 

  34. Widmark A, Gunnlaugsson A, Beckman L et al (2019) Ultra-hypofractionated versus conventionally fractionated radiotherapy for prostate cancer: 5‑year outcomes of the HYPO-RT-PC randomised, non-inferiority, phase 3 trial. Lancet 394:385–395

    Article  PubMed  Google Scholar 

  35. Winkel D, Bol GH, Kroon PS et al (2019) Adaptive radiotherapy: the Elekta unity MR-linac concept. Clin Transl Radiat Oncol 18:54–59

    Article  PubMed  PubMed Central  Google Scholar 

  36. Winkel D, Werensteijn-Honingh AM, Kroon PS et al (2019) Individual lymph nodes: “see it and zap it”. Clin Transl Radiat Oncol 18:46–53

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cihan Gani.

Ethics declarations

Interessenkonflikt

Die Universitätsklinik für Radioonkologie Tübingen, und in diesem Rahmen auch C. Gani, L. Uder, S. Böke und D. Wegener, erhält im Rahmen von Forschungskooperationen finanzielle und technische Unterstützung von Elekta, Philips, Siemens, Dr. Sennewald Medizintechnik, Kaiku Health, TheraPanacea, PTW, ITV. Das MR-Linac- Programm wird durch die Deutsche Forschungsgemeinschaft gefördert (DFG ZI 736/2‑1; PAK 997/1: GA 2996/1‑1, ZI 736/4‑1).

Alle beschriebenen Untersuchungen am Menschen wurden mit Zustimmung der zuständigen Ethik-Kommission, im Einklang mit nationalem Recht sowie gemäß der Deklaration von Helsinki von 1975 (in der aktuellen, überarbeiteten Fassung) durchgeführt. Von allen beteiligten Patienten liegt eine Einverständniserklärung vor.

Additional information

Redaktion

David Krug, Kiel

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Uder, L., Böke, S., Wegener, D. et al. Online Magnetresonanztomographie-geführte und adaptive Strahlentherapie. best practice onkologie 17, 530–541 (2022). https://doi.org/10.1007/s11654-022-00440-1

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11654-022-00440-1

Schlüsselwörter

Keywords

Navigation