Skip to main content
Log in

Prävention HPV-induzierter Erkrankungen durch prophylaktische Impfung

Prevention of HPV-induced diseases by prophylactic vaccination

  • Topic
  • Published:
best practice onkologie Aims and scope

Zusammenfassung

Infektionen mit humanen Papillomviren (HPV) gehören zu den häufigsten Virusinfektionen des Menschen. HPV können neben gutartigen vulgären Warzen auch benigne und maligne Läsionen der Kopf-Hals-Region sowie anogenitale Dysplasien und Karzinome verursachen. Seit dem Jahr 2007 sind effektive und sichere prophylaktische HPV-Impfstoffe in Europa zugelassen. In Deutschland sind derzeitig ein bivalenter (HPV16 und 18) und ein nonavalenter HPV-Impfstoff (HPV6, 11, 16, 18, 31, 33, 45, 52 und 58) erhältlich. Von der Ständigen Impfkommission (STIKO) wird aktuell die geschlechtsneutrale prophylaktische HPV-Impfung im Alter von 9 bis 14 Jahren empfohlen mit der Möglichkeit einer Nachholimpfung bis zum Alter von 17 Jahren. Der nonavalente HPV-Impfstoff schützt sowohl vor einem Großteil HPV-induzierter Dysplasien und Karzinome als auch effektiv vor Genitalwarzen. Auch iatrogen immunsupprimierte Patienten, die älter als 17 Jahre sind, sollten eine prophylaktische HPV-Impfung erhalten, insbesondere bis zum Alter von 26 Jahren. Bei bereits bestehender HPV-Infektion bzw. HPV-induzierten Läsionen führen prophylaktische HPV-Impfstoffe nicht zu einer beschleunigten HPV-Elimination bzw. Abheilung.

Abstract

Human papillomavirus (HPV) infections belong to the most frequent viral infections. Besides benign common warts and benign and malignant lesions of the head and neck area, HPV can induce anogenital dysplasias and cancers. Since the year 2007, effective and safe prophylactic HPV vaccines are licensed in Europe. To date, a bivalent (HPV16 and 18) and a nonavalent HPV vaccine (HPV6, 11, 16, 18, 31, 33, 45, 52, and 58) are commercially available in Germany. The German standing committee on vaccination (STIKO) currently recommends gender-neutral prophylactic HPV-vaccination between 9 and 14 years of age, with the possibility of catch-up vaccination until the age of 17 years. Besides a large proportion of HPV-induced anogenital dysplasias and carcinomas, the nonavalent HPV vaccine also prevents anogenital warts. Iatrogenically immunocompromised patients older than 17 years of age should also receive prophylactic HPV vaccination, preferrably by the age of 26 years. In case of already acquired HPV infection or existing HPV-induced lesions prophylactic vaccination does not lead to accelerated HPV elimination or clearance of lesions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Literatur

  1. Ali H, Donovan B, Wand H et al (2013) Genital warts in young Australians five years into national human papillomavirus vaccination programme: national surveillance data. BMJ 346:f2032

    Article  PubMed  Google Scholar 

  2. Arbyn M, Xu L, Simoens C et al (2018) Prophylactic vaccination against human papillomaviruses to prevent cervical cancer and its precursors. Cochrane Database Syst Rev. https://doi.org/10.1002/14651858.CD009069.pub3

    Article  PubMed  PubMed Central  Google Scholar 

  3. Bernard HU (2013) Taxonomy and phylogeny of papillomaviruses: an overview and recent developments. Infect Genet Evol 18:357–361

    Article  PubMed  Google Scholar 

  4. Bouvard V, Baan R, Straif K et al (2009) A review of human carcinogens—Part B: biological agents. Lancet Oncol 10:321–322

    Article  PubMed  Google Scholar 

  5. Brotherton JM, Ogilvie GS (2015) Current status of human papillomavirus vaccination. Curr Opin Oncol 27(5):399–404

    Article  CAS  PubMed  Google Scholar 

  6. Castellsague X, Giuliano AR, Goldstone S et al (2015) Immunogenicity and safety of the 9‑valent HPV vaccine in men. Vaccine 33(48):6892–6901

    Article  CAS  PubMed  Google Scholar 

  7. Castle PE, Maza M (2016) Prophylactic HPV vaccination: past, present, and future. Epidemiol Infect 144(3):449–468

    Article  CAS  PubMed  Google Scholar 

  8. Chesson HW, Dunne EF, Hariri S, Markowitz LE (2014) The estimated lifetime probability of acquiring human papillomavirus in the United States. Sex Transm Dis 41(11):660–664

    Article  PubMed  PubMed Central  Google Scholar 

  9. Chin-Hong PV, Reid GE (2019) Human papillomavirus infection in solid organ transplant recipients: guidelines from the American Society of Transplantation Infectious Diseases Community of Practice. Clin Transplant 33(9):e13590

    Article  PubMed  Google Scholar 

  10. Chow EP, Read TR, Wigan R et al (2015) Ongoing decline in genital warts among young heterosexuals 7 years after the Australian human papillomavirus (HPV) vaccination programme. Sex Transm Infect 91:214–219

    Article  PubMed  Google Scholar 

  11. de Sanjose S, Quint WG, Alemany L et al (2010) Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. Lancet Oncol 11(11):1048–1056

    Article  PubMed  CAS  Google Scholar 

  12. de Martel C, Georges D, Bray F et al (2020) Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health 8(2):e180–e190

    Article  PubMed  Google Scholar 

  13. De Vuyst H, Clifford GM, Nascimento MC et al (2009) Prevalence and type distribution of human papillomavirus in carcinoma and intraepithelial neoplasia of the vulva, vagina and anus: a meta-analysis. Int J Cancer 124(7):1626–1636

    Article  PubMed  CAS  Google Scholar 

  14. Dhar JP, Essenmacher L, Dhar R et al (2017) The safety and immunogenicity of Quadrivalent HPV (qHPV) vaccine in systemic lupus erythematosus. Vaccine 35(20):2642–2646

    Article  CAS  PubMed  Google Scholar 

  15. Drolet M, Benard E, Boily MC et al (2015) Population-level impact and herd effects following human papillomavirus vaccination programmes: a systematic review and meta-analysis. Lancet Infect Dis 15(5):565–580

    Article  PubMed  PubMed Central  Google Scholar 

  16. Epidemiologisches Bulletin 10 (2020) Gesetz für den Schutz vor Masern und zur Stärkung der Impfprävention. (https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2020/Ausgaben/10_20.pdf?__blob=publicationFile). Zugegriffen: 23. Nov. 2020

  17. Epidemiologisches Bulletin 32/33 (2020) Impfstatus der Kinder und Jugendlichen in Deutschland. https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2020/Ausgaben/32-33_20.pdf?__blob=publicationFile. Zugegriffen: 23. Nov. 2020

  18. Epidemiologisches Bulletin 34 (2020) Empfehlungen der Ständigen Impfkommission beim Robert Koch-Institut 2020/2021. (https://www.rki.de/DE/Content/Infekt/EpidBull/Archiv/2020/Ausgaben/34_20.pdf?__blob=publicationFile)

  19. European AIDS Clinical Society (2020) EACS Guidelines, Version 10.1. https://www.eacsociety.org/files/2019_guidelines-10.0_final.pdf. Zugegriffen: 23. Nov. 2020

  20. Feldman C, Liu J, Feldman S et al (2017) Risk of high-grade cervical dysplasia and cervical cancer in women with systemic lupus erythematosus receiving immunosuppressive drugs. Lupus 26(7):682–689

    Article  CAS  PubMed  Google Scholar 

  21. Ferris DG, Samakoses R, Block SL et al (2017) 4‑Valent human papillomavirus (4vHPV) vaccine in preadolescents and adolescents after 10 years. Pediatrics 140(6):e20163947

    Article  PubMed  Google Scholar 

  22. García-Carrasco M, Mendoza-Pinto C, Rojas-Villarraga A et al (2019) Prevalence of cervical HPV infection in women with systemic lupus erythematosus: a systematic review and meta-analysis. Autoimmun Rev 18(2):184–191

    Article  PubMed  Google Scholar 

  23. Giuliano AR, Lee JH, Fulp W et al (2011) Incidence and clearance of genital human papillomavirus infection in men (HIM): a cohort study. Lancet 377(9769):932–940

    Article  PubMed  PubMed Central  Google Scholar 

  24. Giuliano AR, Palefsky JM, Goldstone S et al (2011) Efficacy of quadrivalent HPV vaccine against HPV Infection and disease in males. N Engl J Med 364(5):401–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Guo T, Eisele DW, Fakhry C et al (2016) The potential impact of prophylactic human papillomavirus vaccination on oropharyngeal cancer. Cancer 122(15):2313–2323

    Article  PubMed  Google Scholar 

  26. Gravitt PE (2011) The known unknowns of HPV natural history. J Clinical Invest 121(12):4593–4599

    Article  CAS  Google Scholar 

  27. Gredner T, Behrens G, Stock C et al (2018) Cancers due to infection and selected environmental factors. Dtsch Arztebl Int 115(35–36):586–593

    PubMed  PubMed Central  Google Scholar 

  28. Gross G, Pfister H (2004) Role of human papillomavirus in penile cancer, penile intraepithelial squamous cell neoplasias and in genital warts. Med Microbiol Immunol 193(1):35–44

    Article  CAS  PubMed  Google Scholar 

  29. Gross GE, Werner RN, Becker JC et al (2018) S2k guideline: HPV-associated lesions of the external genital region and the anus—anogenital warts and precancerous lesions of the vulva, the penis, and the peri- and intra-anal skin (short version). J Dtsch Dermatol Ges 16(2):242–255

    PubMed  Google Scholar 

  30. Grulich AE, van Leeuwen MT, Falster MO, Vajdic CM (2007) Incidence of cancers in people with HIV/AIDS compared with immunosuppressed transplant recipients: a meta-analysis. Lancet 370(9581):59–67

    Article  PubMed  Google Scholar 

  31. Hartwig S, St. Guily JL, Dominiak-Felden LG et al (2017) Estimation of the overall burden of cancers, precancerous lesions, and genital warts attributable to 9‑valent HPV vaccine types in women and men in Europe. Infect Agent Cancer 11(12):19

    Article  CAS  Google Scholar 

  32. Haeggblom L, Ramqvist T, Tommasino M et al (2017) Time to change perspectives on HPV in oropharyngeal cancer. A systematic review of HPV prevalence per oropharyngeal sub-site the last 3 years. Papillomavirus Res 4:1–11

    Article  PubMed  PubMed Central  Google Scholar 

  33. Herweijer E, Sundstrom K, Ploner A et al (2016) Quadrivalent HPV vaccine effectiveness against high-grade cervical lesions by age at vaccination: a population-based study. Int J Cancer 138(12):2867–2874

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hildesheim A, Herrero R, Wacholder S et al (2007) Effect of human papillomavirus 16/18 L1 viruslike particle vaccine among young women with preexisting infection: a randomized trial. JAMA 298(7):743–753

    Article  CAS  PubMed  Google Scholar 

  35. Iversen OE, Miranda MJ, Ulied A et al (2016) Immunogenicity of the 9‑valent HPV vaccine using 2‑dose regimens in girls and boys vs a 3-dose regimen in women. JAMA 316(22):2411–2421

    Article  CAS  PubMed  Google Scholar 

  36. Joura EA, Giuliano AR, Iversen OE et al (2015) A 9‑valent HPV vaccine against infection and intraepithelial neoplasia in women. N Engl J Med 372(8):711–723

    Article  CAS  PubMed  Google Scholar 

  37. Kjaer SK, Nygård M, Dillner J et al (2018) A 12-year follow-up on the long-term effectiveness of the quadrivalent human papillomavirus vaccine in 4 nordic countries. Clin Infect Dis 66(3):339–345

    Article  CAS  PubMed  Google Scholar 

  38. Komlos KF, Kocjan BJ, Kosorok P et al (2012) Tumor-specific and gender-specific pre-vaccination distribution of human papillomavirus types 6 and 11 in anogenital warts and laryngeal papillomas: a study on 574 tissue specimens. J Med Virol 84:1233–1241

    Article  PubMed  Google Scholar 

  39. Kraut AA, Schink T, Schulze-Rath R et al (2010) Incidence of anogenital warts in Germany: a population-based cohort study. BMC Infect Dis 10:360

    Article  PubMed  PubMed Central  Google Scholar 

  40. Kreimer AR, Struyf F, Del Rosario-Raymundo MR et al (2015) Efficacy of fewer than three doses of an HPV-16/18 AS04-adjuvanted vaccine: combined analysis of data from the Costa Rica Vaccine and PATRICIA Trials. Lancet Oncol 16(7):775–786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Kreuter A, Potthoff A, Brockmeyer NH et al (2010) Anal carcinoma in human immunodeficiency virus-positive men: results of a prospective study from Germany. Br J Dermatol 162(6):1269–1277

    Article  CAS  PubMed  Google Scholar 

  42. Kumar D, Unger ER, Panicker G et al (2013) Immunogenicity of quadrivalent human papillomavirus vaccine in organ transplant recipients. Am J Transplant 13(9):2411–2417

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lei J, Ploner A, Elfström KM et al (2020) HPV vaccination and the risk of invasive cervical cancer. N Engl J Med 383(14):1340–1348

    Article  CAS  PubMed  Google Scholar 

  44. Lin C, Franceschi S, Clifford GM (2018) Human papillomavirus types from infection to cancer in the anus, according to sex and HIV status: a systematic review and meta-analysis. Lancet Infect Dis 18(2):198–206

    Article  PubMed  PubMed Central  Google Scholar 

  45. Muñoz N, Bosch FX, de Sanjosé S et al (2003) Epidemiologic classification of human papillomavirus types associated with cervical cancer. N Engl J Med 348(6):518–527

    Article  PubMed  Google Scholar 

  46. Naud PS, Roteli-Martins CM, De Carvalho NS et al (2014) Sustained efficacy, immunogenicity, and safety of the HPV-16/18 AS04-adjuvanted vaccine: final analysis of a long-term follow-up study up to 9.4 years post-vaccination. Hum Vaccin Immunother 10(8):2147–2162

    Article  PubMed  PubMed Central  Google Scholar 

  47. Ndiaye C, Mena M, Alemany L et al (2014) HPV DNA, E6/E7 mRNA, and p16INK4a detection in head and neck cancers: a systematic review and meta-analysis. Lancet Oncol 15(12):1319–1331

    Article  CAS  PubMed  Google Scholar 

  48. Nelson DR, Neu AM, Abraham A et al (2016) Immunogenicity of human papillomavirus recombinant vaccine in children with CKD. Clin J Am Soc Nephrol 11(5):776–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Oberle U, Keller-Stanislawski B (2018) Sicherheit der Impfung gegen humane Papillomviren (HPV). Bull Arzneimittelsicherh 3:17–23

    Google Scholar 

  50. Olesen TB, Sand FL, Rasmussen CL et al (2019) Prevalence of human papillomavirus DNA and p16INK4a in penile cancer and penile intraepithelial neoplasia: a systematic review and meta-analysis. Lancet Oncol 20(1):145–158

    Article  CAS  PubMed  Google Scholar 

  51. Olsson SE, Restrepo JA, Reina JC et al (2020) Long-term immunogenicity, effectiveness, and safety of nine-valent human papillomavirus vaccine in girls and boys 9 to 15 years of age: Interim analysis after 8 years of follow-up. Papillomavirus Res 11(10):100203

    Article  Google Scholar 

  52. Orumaa M, Kjaer SK, Dehlendorff C et al (2020) The impact of HPV multi-cohort vaccination: real-world evidence of faster control of HPV-related morbidity. Vaccine 38:1345–1351

    Article  PubMed  Google Scholar 

  53. Palefsky JM, Giuliano AR, Goldstone S et al (2011) HPV vaccine against anal HPV infection and anal intraepithelial neoplasia. N Engl J Med 365(17):1576–1585

    Article  CAS  PubMed  Google Scholar 

  54. Patel H, Wagner M, Singhal P et al (2013) Systematic review of the incidence and prevalence of genital warts. BMC Infect Dis 13:39

    Article  PubMed  PubMed Central  Google Scholar 

  55. Robert Koch-Institut, Gesellschaft der epidemiologischen Krebsregister in Deutschland e. V. (2019) Krebs in Deutschland für 2015/2016. 12. Ausgabe. https://www.krebsdaten.de/Krebs/DE/Content/Publikationen/Krebs_in_Deutschland/kid_2019/krebs_in_deutschland_2019.pdf?__blob=publicationFile. Zugegriffen: 23. Nov. 2020

  56. Roberts S, Evans D, Mehanna H, Parish JL (2019) Modelling human papillomavirus biology in oropharyngeal keratinocytes. Philos Trans R Soc Lond B Biol Sci 374(1773):20180289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sand FL, Munk C, Frederiksen K et al (2019) Risk of CIN3 or worse with persistence of 13 individual oncogenic HPV types. Int J Cancer 144(8):1975–1982

    Article  CAS  PubMed  Google Scholar 

  58. Schiffman M, Castle PE, Jeronimo J, Rodriguez AC, Wacholder S (2007) Human papillomavirus and cervical cancer. Lancet 370(9590):890–907

    Article  CAS  PubMed  Google Scholar 

  59. Schiller JT, Castellsague X, Garland SM (2012) A review of clinical trials of human papillomavirus prophylactic vaccines. Vaccine 30(Suppl 5):F123–F138

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Schiller JT, Lowy DR (2012) Understanding and learning from the success of prophylactic human papillomavirus vaccines. Nat Rev Microbiol 10(10):681–692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schiller JT, Müller M (2015) Next generation prophylactic human papillomavirus vaccines. Lancet Oncol 16(5):e217–e225

    Article  CAS  PubMed  Google Scholar 

  62. Schiller J, Lowy D (2018) Explanations for the high potency of HPV prophylactic vaccines. Vaccine 36(32 Pt A):4768–4773

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Schwarz T, Spaczynski M, Kaufmann A et al (2015) Persistence of immune responses to the HPV-16/18 AS04-adjuvanted vaccine in women aged 15–55 years and first-time modelling of antibody responses in mature women: results from an open-label 6‑year follow-up study. BJOG 122(1):107–118

    Article  CAS  PubMed  Google Scholar 

  64. Segal JP, Askari A, Clark SK, Hart AL, Faiz OD (2020) The Incidence and Prevalence of Human Papilloma Virus-associated Cancers in IBD. Inflamm Bowel Dis. https://doi.org/10.1093/ibd/izaa035. Epub ahead of print. PMID: 32080713

  65. Senkomago V, Henley SJ, Thomas CC et al (2019) Human papillomavirus-attributable cancers—United States, 2012–2016. MMWR Morb Mortal Wkly Rep 68(33):724–728

    Article  PubMed  PubMed Central  Google Scholar 

  66. Stanley M (2010) Pathology and epidemiology of HPV infection in females. Gynecol Oncol 117(2):5–10

    Article  Google Scholar 

  67. Swedish KA, Factor SH, Goldstone SE (2012) Prevention of recurrent high-grade anal neoplasia with quadrivalent human papillomavirus vaccination of men who have sex with men: a nonconcurrent cohort study. Clin Infect Dis 54(7):891–898

    Article  PubMed  Google Scholar 

  68. Toh ZQ, Kosasih J, Russell FM et al (2019) Recombinant human papillomavirus nonavalent vaccine in the prevention of cancers caused by human papillomavirus. Infect Drug Resist 12:1951–1967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Tota JE, Chevarie-Davis M, Richardson LA, de Vries M, Franco EL (2011) Epidemiology and burden of HPV infection and related diseases: Implications for prevention strategies. Prev Med 53:12–21

    Article  Google Scholar 

  70. Tota JE, Best AF, Zumsteg ZS et al (2019) Evolution of the oropharynx cancer epidemic in the United States: moderation of increasing incidence in younger individuals and shift in the burden to older individuals. J Clin Oncol 37(18):1538–1546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Van Damme P, Olsson SE, Block S et al (2015) Immunogenicity and safety of a 9-Valent HPV vaccine. Pediatrics 136(1):e28–e39

    Article  PubMed  Google Scholar 

  72. Van Damme P, Meijer CJ, Kieninger D et al (2016) A phase III clinical study to compare the immunogenicity and safety of the 9‑valent and quadrivalent HPV vaccines in men. Vaccine 34(35):4205–4212

    Article  PubMed  CAS  Google Scholar 

  73. Van Dyne EA, Henley SJ, Saraiya M, Thomas CC, Markowitz LE, Benard VB (2018) Trends in human papillomavirus-associated cancers—United States, 1999–2015. MMWR Morb Mortal Wkly Rep 67(33):918–924

    Article  PubMed  PubMed Central  Google Scholar 

  74. Wadström H, Arkema EV, Sjöwall C et al (2017) Cervical neoplasia in systemic lupus erythematosus: a nationwide study. Rheumatology 56(4):613–619

    PubMed  Google Scholar 

  75. Whitworth HS, Gallagher KE, Howard N et al (2020) Efficacy and immunogenicity of a single dose of human papillomavirus vaccine compared to no vaccination or standard three and two-dose vaccination regimens: a systematic review of evidence from clinical trials. Vaccine 38(6):1302–1314

    Article  PubMed  Google Scholar 

  76. Wieland U, Kreuter A (2017) Genital warts in HIV-infected individuals. Hautarzt 68(3):192–198

    Article  CAS  PubMed  Google Scholar 

  77. Wikstrom A, Vassilaki I, Hedblad MA et al (2013) The spectrum of genital human papillomavirus infection among men attending a Swedish sexually-transmitted infections clinic: human papillomavirus typing and clinical presentation of histopathologically benign lesions. Acta Derm Venereol 93:223–227

    Article  PubMed  Google Scholar 

  78. Wilkin TJ, Chen H, Cespedes MS et al (2018) A randomized, placebo-controlled trial of the quadrivalent human papillomavirus vaccine in human immunodeficiency virus-infected adults aged 27 years or older: aIDS clinical trials group protocol A5298. Clin Infect Dis 67(9):339–1346

    Article  CAS  Google Scholar 

  79. Wittekindt C, Wagner S, Bushnak A et al (2019) Increasing incidence rates of oropharyngeal squamous cell carcinoma in Germany and significance of disease burden attributed to human papillomavirus. Cancer Prev Res 12(6):375–382

    Article  CAS  Google Scholar 

  80. Yarchoan R, Uldrick TS (2018) HIV-associated cancers and related diseases. N Engl J Med 378(11):1029–1041

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alexander Kreuter.

Ethics declarations

Interessenkonflikt

U. Wieland gibt an, dass kein Interessenkonflikt besteht. A. Kreuter hat Referentenhonorare von MSD Sharp & Dohme GmbH erhalten und war im Advisory Board von MSD Sharp & Dohme GmbH tätig.

Für diesen Beitrag wurden von den Autoren keine Studien an Menschen oder Tieren durchgeführt. Für die aufgeführten Studien gelten die jeweils dort angegebenen ethischen Richtlinien. Für Bildmaterial oder anderweitige Angaben innerhalb des Manuskripts, über die Patienten zu identifizieren sind, liegt von ihnen und/oder ihren gesetzlichen Vertretern eine schriftliche Einwilligung vor.

Additional information

Redaktion

Stephan Schmitz, Köln

Dieser Beitrag erschien zuerst in Der Hautarzt 2021 · 72:106–113. https://doi.org/10.1007/s00105-020-04739-4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wieland, U., Kreuter, A. Prävention HPV-induzierter Erkrankungen durch prophylaktische Impfung. best practice onkologie 17, 160–168 (2022). https://doi.org/10.1007/s11654-022-00372-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11654-022-00372-w

Schlüsselwörter

Keywords