Skip to main content
Log in

A review of geoanalytical databases

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

Geoanalytical data provide fundamental information according to which the Earth’s resources can be known and exploited to support human life and development. Large amounts of manpower and material and financial resources have been invested to acquire a wealth of geoanalytical data over the past 40 years. However, these data are usually managed by individual researchers and are preserved in an ad hoc manner without metadata that provide the necessary context for interpretation and data integration requirements. In this scenario, fewer data, except for published data, can be reutilized by geological researchers. Many geoanalytical databases have been constructed to collect existing data and to facilitate their use. These databases are useful tools for preserving, managing, and sharing data for geological research, and provide various data repositories to support geological studies. Since these databases are dispersed and diverse, it is difficult for researchers to make full use of them. This contribution provides an introduction on available geoanalytical databases. The database content can be made accessible to researchers, the ways in which this can be done, and the functionalities that can be used are illustrated in detail. Moreover, constraints that have limited the reutilization of geoanalytical data and creation of more advanced geoanalytical databases are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agrawal S, Verma SP (2007) Comment on “Tectonic classification of basalts with classification trees” by Pieter Vermeesch (2006). Geochim Cosmochim Acta 71(13):3388–3390

    Article  Google Scholar 

  • Ahlsved C, Lampio E, Tarvainen T (1991) ALKEMIA—a VAX minicomputer database and program package for geochemical exploration. J Geochem Explor 41(1–2):23–28

    Article  Google Scholar 

  • Ariskin AA, Barmina GS, Meshalkin SS, Nikolaev GS, Almeev RR (1996) INFOREX-3.0: a database on experimental studies of phase equilibria in igneous rocks and synthetic systems: II. Data description and petrological applications. Comput Geosci 22(10):1073–1082

    Article  Google Scholar 

  • Artioli G, Angelini I, Nimis P, Villa IM (2016) A lead-isotope database of copper ores from the Southeastern Alps: a tool for the investigation of prehistoric copper metallurgy. J Archaeol Sci 75:27–39

    Article  Google Scholar 

  • Axel S, Ingolf D (2016) A database system for geochemical, isotope hydrological, and geochronological laboratories. Radiocarbon 43(2A):325–337

    Google Scholar 

  • Becker T, Goscombe B (2004) The geochronological database of Namibia. Communs Geol Surv Namibia 13(2004):103–106. https://www.africabib.org/rec.php?RID=Q00040477

  • Brandl PA, Regelous M, Beier C, Haase KM (2013) High mantle temperatures following rifting caused by continental insulation. Nat Geosci 6(5):391–394

    Article  Google Scholar 

  • Brändle JL, Nagy G (1995) The state of the 5th version of IGBA: igneous petrological data base. Comput Geosci 21(3):425–432

    Article  Google Scholar 

  • Bray EAD, Ressel MW, Barnes CG (2007) Geochemical database for intrusive rocks of north-central and northeast Nevada. Center for Integrated Data Analytics Wisconsin Science Center, Wisconsin

    Google Scholar 

  • Budd AR, Hazell MS, Sedgmen A, Sedgmen L, Wyborn LAI, Ryburn R (2000) OZCHEM dataset release 1 documentation: AGSO’s national whole rock geochemistry database. Australian Geological Survey Organisation. https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/32986

  • Cai J, Liu D (2002) Chinese geochronologic database in the chinese geo-science database system. Geol Rev 48(Suppl):294–297

    Google Scholar 

  • Carbotte SM, Marjanović M, Carton H, Mutter JC, Canales JP, Nedimović MR, Han S, Perfit MR (2013) Fine-scale segmentation of the crustal magma reservoir beneath the East Pacific Rise. Nat Geosci 6(10):866–870

    Article  Google Scholar 

  • Carr MJ, Feigenson MD, Bolge LL, Walker JA, Gazel E (2014) RU_CAGeochem, a database and sample repository for Central American volcanic rocks at Rutgers University. Geosci Data J 1(1):43–48

    Article  Google Scholar 

  • Champion DC, Budd AR, Hazell MS, Sedgmen A (2007) OZCHEM national whole rock geochemistry dataset. Geoscience Australia, Symonston

    Google Scholar 

  • Cheng H, Zhou H, Yang Q, Zhang L, Ji F, Henry D (2016) Jurassic zircons from the Southwest Indian Ridge. Sci Rep 6:26260

    Article  Google Scholar 

  • Church SE (2010) Lead isotope database of unpublished results from sulfide mineral occurrences—California. U.S. Geological Survey, Oregon

    Google Scholar 

  • Cottrell E, Kelley KA (2013) Redox heterogeneity in mid-ocean ridge basalts as a function of mantle source. Science 340(6138):1314

    Article  Google Scholar 

  • Dick HJB, Zhou H (2014) Ocean rises are products of variable mantle composition, temperature and focused melting. Nat Geosci 8(1):68–74

    Article  Google Scholar 

  • Eglington BM (2004) DateView: a windows geochronology database. Comput Geosci 30(8):847–858

    Article  Google Scholar 

  • Fitzgibbon TT (1987) User’s manual for REFORM; a rock-sample database program in FORTRAN-77. U.S. Geological Survey, Oregon

    Book  Google Scholar 

  • Greber ND, Dauphas N, Bekker A, Ptáček MP, Bindeman IN, Hofmann A (2017) Titanium isotopic evidence for felsic crust and plate tectonics 35 billion years ago. Science 357(6357):1271–1274

    Article  Google Scholar 

  • Hall GEM (1996) Twenty-five years in geoanalysis, 1970–1995 (Presidential Address at 17th IGES in Townsville, Australia, May 15, 1995). J Geochem Explor 57(1):1–8

    Article  Google Scholar 

  • Hazell MS, Kilgour B, Wyborn LAI, Sheraton JW, Ryburn RJ (1995) ROCKCHEM dataset version 2 documentation: AGSO’s national whole rock geochemistry database. Australian Geological Survey Organisation 1995/026. https://ecat.ga.gov.au/geonetwork/srv/eng/catalog.search#/metadata/14823

  • Hellström F (2016) The Swedish bedrock age database. https://www.researchgate.net/publication/295616745_The_Swedish_bedrock_age_database/stats.

  • Helo C, Longpr MA, Shimizu N, Clague DA, Stix J (2011) Explosive eruptions at mid-ocean ridges driven by CO2-rich magmas. Nat Geosci 4(4):260–263

    Article  Google Scholar 

  • Hoernle K, Hauff F, Werner R, Bogaard PVD, Gibbons AD, Conrad S, Müller RD (2011) Origin of Indian Ocean Seamount Province by shallow recycling of continental lithosphere. Nat Geosci 4(12):883–887

    Article  Google Scholar 

  • Jochum KP, Nohl U, Herwig K, Lammel E, Stoll B, Hofmann AW (2005) GeoReM: a new geochemical database for reference materials and isotopic standards. Geostand Geoanal Res 29(3):333–338

    Article  Google Scholar 

  • Johnson EA (2012) A petrographic and geochemical database for countertops as a teaching resource.

  • Joy KH, Zolensky ME, Nagashima K, Huss GR, Ross DK, McKay DS, Kring DA (2012) Direct detection of projectile relics from the end of the lunar basin-forming epoch. Science 336(6087):1426

    Article  Google Scholar 

  • Kamenov GD, Perfit MR, Lewis JF, Goss AR, Arévalo R Jr, Shuster RD (2011) Ancient lithospheric source for Quaternary lavas in Hispaniola. Nat Geosci 4(8):554–557

    Article  Google Scholar 

  • Kelley KA (2014) Inside earth runs hot and cold. Science 344(6179):51–52

    Article  Google Scholar 

  • Kelley KA, Cottrell E (2009) Water and the oxidation state of subduction zone magmas. Science 325(5940):605–607

    Article  Google Scholar 

  • Key RM, Waele BD, Liyungu AK (2013) A multi-element baseline geochemical database from the western extension of the Central Africa Copperbelt in northwestern Zambia. Appl Earth Sci IMM Trans 113:3

    Google Scholar 

  • Klein TL, Evans KV, Dewitt EH (2010) Geochronology database for central Colorado. US Geol Surv Data Ser 2009:489

    Google Scholar 

  • Le Bas MJ, Rex DC, Stillman CJ (1986) The early magmatic chronology of Fuerteventura, Canary Islands. Geol Mag 123(03):287

    Article  Google Scholar 

  • Lehnert K (2001) PETDB—the interactive web-based petrological database of the ocean floor. GSA Annual Meeting, November 5–8, 2001. https://gsa.confex.com/gsa/2001AM/finalprogram/abstract_27351.htm

  • Lehnert KA, Goldstein SL, Murray RW, Pisias NG (2005) SedDB—Next generation data management for marine sediment geochemistry. https://www.ldeo.columbia.edu/research/marine-geology-geophysics/seddb-data-collection-marine-sediment-geochemistry

  • Lightfoot PC (1993) Interpretation of geoanalytical data

  • Liu RM, Xuan WU, Xiang YC, Geng YT (2012) China national multi-purpose geochemical database development and application prospect. Geoscience 26(5):989–995

    Google Scholar 

  • Liu X, Zhang Q, Zhang C (2017) A discussion on the tectonic setting of global Cenozoic andesite. Sci Geol Sin 52(3):649–667

    Google Scholar 

  • Lopes C, Ferreira A, Chichorro M, Pereira MF, Almeida JA, Sol AR (2014) Chroniberia: the ongoing development of a geochronological GIS database of Iberia. Springer, Berlin

    Google Scholar 

  • Mackley RD, Last GV, Serkowski JA, Middleton LA, Cantrell KJ (2010) MinChem: a prototype petrologic database for Hanford site sediments. Office of Scientific and Technical Information Technical Reports

  • Maitre RL, Chayes F (1985) Decoding IGBADAT, a world data base for igneous petrology. Pergamon Press Inc, Oxford

    Google Scholar 

  • Mcintosh WC (1998) Sanidine, single crystal, laser-fusion 40 Ar f9 Ar Geochronology Database for the Superstition Volcanic Field, Central Arizona, Arizona Geological Survey open-file report, pp 98–27

  • McNutt MK, Lehnert K, Hanson B, Nosek BA (2016) Liberating field science samples and data. Science 351(6277):1024

    Article  Google Scholar 

  • Meshalkin SS, Ariskin AA (1996) INFOREX-3.0: a database on experimental studies of phase equilibria in igneous rocks and synthetic systems: I. Datafile and management system structure. Comput Geosci 22(10):1061–1071

    Article  Google Scholar 

  • Otton JK, Breit GN, Kharaka YK, Rice CA (2002) A national produced-water geochemistry database. http://www.gwpc.org/sites/default/files/eventsessions/James_K_Otton_PWC2002_0.pdf

  • Page RW, Black LP, Sun SS, Kilgour B, Hazell MS, Wyborn LAI, Ryburn RJ (2007) AGSO’s national geochronology database of Australia: OZCHRON dataset documentation. MMW Fortschritte Der Medizin 149(149):17

    Google Scholar 

  • Pearce JA, Harris NBW, Tindle AG (1984) Trace element discrimination diagrams for the tectonic interpretation of granitic rocks. J Pet 25(4):956–983

    Article  Google Scholar 

  • Potts P (2000) The development of geoanalytical techniques: a historical perspective. Actas Inageq 6(1):1–9

    Google Scholar 

  • Rasilainen K, Lahtinen R, Bornhorst TJ (2007) The rock geochemistry database of Finland—a new tool for large scale exploration and crustal studies. In: Andrew CJ et al. (eds) Digging deeper. Ninth biennial meeting of the Society for Geology Applied to Mineral Deposits, Dublin, Ireland, 20th–23rd August 2007, pp 1267–1270. https://www.mendeley.com/catalogue/rock-geochemistry-database-finland-new-tool-large-scale-exploration-crustal-studies/

  • Samuel H, King SD (2014) Mixing at mid-ocean ridges controlled by small-scale convection and plate motion. Nat Geosci 7(8):602–605

    Article  Google Scholar 

  • Santiago DSF, Bernard B, Hidalgo S (2016) Ecuadorian volcanic events and geochronological database: insight into to the complex eruptive rate of a continental volcanic arc. https://www.researchgate.net/publication/311321963_Ecuadorian_volcanic_events_and_geochronological_database_insight_into_to_the_complex_eruptive_rate_of_a_continental_volcanic_

  • Sarbas B, Nohl U (2009) The GEOROC database—a decade of “online geochemistry”. Geochim Cosmochim Acta Suppl 73(13):A1158

    Google Scholar 

  • Scheib AJ (2013) The National Geochemical Survey of Australia—selected interpretations for western Australian data. https://www.researchgate.net/publication/273287797_THE_NATIONAL_GEOCHEMICAL_SURVEY_OF_AUSTRALIA_-_SELECTED_INTERPRETATIONS_FOR_WESTERN_AUSTRALIAN_DATA

  • Schlindwein V, Schmid F (2016) Mid-ocean-ridge seismicity reveals extreme types of ocean lithosphere. Nature 535:7611

    Article  Google Scholar 

  • Shields G, Veizer J (2002) Precambrian marine carbonate isotope database. Geochem Geophys Geosyst 3(6):1–12

    Article  Google Scholar 

  • Siegel C, Bryan SE, Purdy D, Gust D, Allen C, Uysal T, Champion D (2012) A new database compilation of whole-rock chemical and geochronological data of igneous rocks in Queensland: a new resource for HDR geothermal resource exploration. In: Proceedings of the 2011 Australian Geothermal Energy Conference, Geoscience Australia, Sydney, pp 239–244. http://eprints.qut.edu.au/58441/

  • Siewers U (1994) The geochemical atlas of Finland—Part 2: Till: T. Koljonen (editor). Geological Survey of Finland, Espoo, 1992, 218 pp, ISBN 951-690-379-7 (hardcover). Chem Geol 113:377–378

    Article  Google Scholar 

  • Silva LCD, Rodrigues JB, Silveira LMC, Pimentel MM (2003) The Brazilian National Geochronological Database: Chronobank. http://www.cprm.gov.br/publique/?tpl=home

  • Sloan J, Henry CD, Hopkins M, Ludington S, Zartman RE, Bush CA, Abston C (2003) National Geochronological Database. Center for Integrated Data Analytics Wisconsin Science Center, Wisconsin

    Google Scholar 

  • Smith SM (2010) The US Geological Survey S National Geochemical Database. Curr Issues Lang Soc 6(2):103–120

    Google Scholar 

  • Smith DB, Cannon WF, Woodruff LG, Solano F, Kilburn JE, Fey DL (2013) Geochemical and mineralogical data for soils of the conterminous United States. Center for Integrated Data Analytics Wisconsin Science Center, Wisconsin

    Book  Google Scholar 

  • Steinhauser G, Sterba JH, Bichler M, Huber H (2006) Neutron activation analysis of Mediterranean volcanic rocks—an analytical database for archaeological stratigraphy. Appl Geochem 21(8):1362–1375

    Article  Google Scholar 

  • Straub SM, Goldstein SL, Class C, Schmidt A (2009) Mid-ocean-ridge basalt of Indian type in the northwest Pacific Ocean basin. Nat Geosci 2(4):286–289

    Article  Google Scholar 

  • Strong DT, Turnbull RE, Haubrock S, Mortimer N (2016) Petlab: New Zealand’s national rock catalogue and geoanalytical database. NZ J Geol Geophys 3:1–7

    Google Scholar 

  • Tarvainen T, Reeder S, Albanese S (2003) Database management and map production. Geochem Atlas Eur Part 1:526

    Google Scholar 

  • Thieblemont D, Marcoux E, Tegyey M, Leistel JM (1994) Genese de la province pyriteuse sud-iberique dans un paleo-prisme d’accretion? Arguments petrologiques. Bull Soc Geol Fr 5:407–423

    Google Scholar 

  • Torley R, McBirney A (2002) Short note: potentialities of a neglected igneous database IGBADAT5. Nat Resour Res 11(1):71–75

    Article  Google Scholar 

  • Verma SP, Quiroz-Ruiz A (2016) Log-ratio transformed major element based multidimensional classification for altered high-Mg igneous rocks. Geochem Geophys Geosyst 17:12

    Article  Google Scholar 

  • Verma SP, Rivera-Gomez MA (2013) Computer programs for the classification and nomenclature of igneous rocks. Episodes 36(2):115–124

    Article  Google Scholar 

  • Vermeesch P (2013) Tectonic discrimination diagrams revisited. Geochem Geophys Geosyst 7(6):1–55

    Google Scholar 

  • JD (2004) Creation of a North American Volcanic and Plutonic Rock Database (NAVDAT)

  • JD (2013a) The Geochron System for sharing and archiving geochronology data: new advances in data management

  • JD (2013b) The Geochron System for sharing and archiving geochronology data: new advances in data management

  • JD, Todd DB, Ross AB, Allen FG, Farmer GL, Richard WC (2006) NAVDAT: a western North American volcanic and intrusive rock geochemical database. Special paper of the Geological Society of America, vol 397

  • Walker JD, Bowring JF, Mclean N, Ash J (2016) The Geochron Database. https://www.researchgate.net/publication/309331741_THE_GEOCHRON_DATABASE

  • Wang Y, Wang X, Gao Y (2001) The review and prospect on geoanalysis. Chin J Anal Chem 29(7):845–851

    Google Scholar 

  • Wang J, Chen W, Zhang Q, Jiao S, Yang J, Pan Z, Wang S, Wang J, Chen W, Zhang Q (2017a) Preliminary research on data mining of N-Morb and E-MORB: discussion on method of the basalt discrimination diagrams and the character of MORB’s mantle source. Acta Petrol Sin 33(3):993–1005

    Google Scholar 

  • Wang X, Xu J, Liu M, Wei Z, Bu W, Hong T (2017b) An ontology-based approach for marine geochemical data interoperation. IEEE Access 99:1

    Article  Google Scholar 

  • Wolfson-Schwehr M, Boettcher MS, Behn MD (2017) Thermal segmentation of mid-ocean ridge-transform faults. Geochem Geophys Geosyst 18(9):993–1005

    Article  Google Scholar 

  • Yachi Y, Kitagawa H, Kunihiro T, Nakamura E (2014) Software dedicated for the curation of geochemical data sets in analytical laboratories. Geostand Geoanal Res 38(1):95–102

    Article  Google Scholar 

  • Yager DB, Hofstra AH, Fifarek K, Webbers A (2010) Development of an igneous rock database with geologic functions: application to Neogene bimodal igneous rocks and mineral resources in the Great Basin. Geosphere 6(5):691–730

    Article  Google Scholar 

  • Yin M (2009) Progress and prospect on geoanalytical techniques in China. Rock Miner Anal 28(1):37–52

    Google Scholar 

  • Zalduegui JFS, Madinabeitia SGD, Ibarguchi JIG, Palero F (2004) A lead isotope database: the Los Pedroches—Alcudia area (Spain); Implications for archaeometallurgical connections across southwestern and southeastern Iberia. Archaeometry 46(4):625–634

    Article  Google Scholar 

  • Zhang H, Zhu Y (2017) Geochronology and geochemistry of the Huilvshan gabbro in west Junggar (NW China): implications for magma process and tectonic regime. Mineral Petrol 7–8:1–19

    Google Scholar 

  • Zhang H, Yang Y, Yan Q, Shi X, Zhu Z, Su W, Qin C, Ye J (2016) Ca/Al ratio of plagioclase-hosted melt inclusions as an indicator for magmatic processes at mid-oceanic ridge? Bull Mineral Petrol Geochem 35(2):387–398

    Google Scholar 

  • Zhang GL, Chen LH, Jackson MG, Hofmann AW (2017) Evolution of carbonated melt to alkali basalt in the South China Sea. Nat Geosci 10:3

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by “Instrument Equipment and superior resources sharing of high school” of China (“211” program, Grant No. CERS-2-9), CGS research fund (JYYWF20181702), National Major Scientific Instruments and Equipment Development Special Funds (No. 2016YFF0103303).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Di Tian or Li Yao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Appendix: PetDB Citations

Appendix: PetDB Citations

1.1 2018

  1. 1.

    Barnes, S., and Arndt, N., 2018 Chapter 6—Distribution and Geochemistry of Komatiites and Basalts Through the Archean, Earth’s Oldest Rocks, pp. 103–132, https://doi.org/10.1016/b978-0-444-63901-1.00006-x

  2. 2.

    Borghini, G., Francomme, J., Fumagalli, P., 2018, Melt-dunite interactions at 0.5 and 0.7 GPa: experimental constraints on the origin of olivine-rich troctolites, Lithos, https://doi.org/10.1016/j.lithos.2018.09.022

  3. 3.

    Brunelli, D., Cipriani, A., Bonatti, E., 2018, Thermal effects of pyroxenites on mantle melting below mid-ocean ridges. Nature Geoscience, https://doi.org/10.1038/s41561-018-0139-z

  4. 4.

    Chen, B., Yu, J–J., Liu, S-J, 2018, Source characteristics and tectonic setting of mafic–ultramafic intrusions in North Xinjiang, NW China: Insights from the petrology and geochemistry of the Lubei mafic—ultramafic intrusion, Lithos, https://doi.org/10.1016/j.lithos.2018.03.016

  5. 5.

    Cheng. T., Nebl, O., Sossi, P., Wu, J., Siebel, W., Chen, F., Nebel-Jacobsen, Y., 2018, On the Sr–Nd–Pb–Hf isotope code of enriched, Dupal-type sub-continental lithospheric mantle underneath south-western China, Chemical Geology, https://doi.org/10.1016/j.chemgeo.2018.05.018

  6. 6.

    Coogan, L., and Gillis, K., 2018 Temperature dependence of chemical exchange during seafloor weathering: Insights from the Troodos ophiolite, GCA, https://doi.org/10.1016/j.gca.2018.09.025

  7. 7.

    Crow, M., Van Waveren, I., Hasibuan, F., 2018, The geochemistry, tectonic and palaeogeographic setting of the Karing Volcanic Complex and the Dusunbaru pluton, an Early Permian volcanic—plutonic centre in Sumatra, Indonesia, J Asian Earth Sci, https://doi.org/10.1016/j.jseaes.2018.08.003

  8. 8.

    Deschamps, F., Duchêne, S., de Sigoyer, J., Bosse, V., Benoit, Vanderhaeghe, M., 2018, Coeval mantle-derived and crust-derived magmas forming two neighbouring plutons in the Songpan Ganze accretionary orogenic wedge (SW China), Journal of Petrology, https://doi.org/10.1093/petrology/egy007

  9. 9.

    Ferriss, E., Plank, T., Newcomb, M., Walker, D., Hauri, E., 2018, Rates of dehydration of olivines from San Carlos and Kilauea Iki, GCA, https://doi.org/10.1016/j.gca.2018.08.050

  10. 10.

    Finlayson V., Konter, J., Konrad, A., Koppers, A., Jackson, M., Rooney, T., 2018, Sr–Pb–Nd–Hf isotopes and 40Ar/39Ar ages reveal a Hawaii—Emperor-style bend in the Rurutu hotspot, EPSL, https://doi.org/10.1016/j.epsl.2018.08.020

  11. 11.

    Frueh-Green, G., Orcutt, B., Roumejon, S., Lilley, M., Morono, Y., Cotterill, C., Green, S., Escartin, J., John, B., McCaig, A., Cannat, M., Menez, B., Schwarzenbach, E., Williams, M., Lang, S., Schrenk, M., Brazelton W., Bilenker, L., 2018, Magmatism, serpentinization and life: Insights through drilling the Atlantis Massif (IODP Expedition 357), Lithos, https://doi.org/10.1016/j.lithos.2018.09.012

  12. 12.

    Garber, J., Maurya, S., Hernandez, J-A., Duncan, M., Zeng, L., Zhang, H., Faul, U., McCammon, C., Montagner, J-P., Moresi, L., Romanowicz, B., Rudnick, R., Stixrude, L., 2018, Multidisciplinary constraints on the abundance of diamond and eclogite in the cratonic lithosphere, G-Cubed, https://doi.org/10.1029/2018gc007534

  13. 13.

    Gomez-Tuena, A., Cavazos-Tovar, J., Parolari, M., Straub, S., Espinasa-Perena, R., 2018, Geochronological and geochemical evidence of continental crust ‘relamination’ in the origin of intermediate arc magmas, Lithos, https://doi.org/10.1016/j.lithos.2018.10.005

  14. 14.

    Green, 2018, Constraining Magma Evolution mechanisms along the Galapagos Spreading Center between 102 W and 82 W through trace element Geochemistry, BS Thesis, The Ohio State University

  15. 15.

    Grove, M., Brown, S., 2018, Magmatic processes leading to compositional diversity in igneous rocks: Bowen (1928) revisited, AJS, https://doi.org/10.2475/01.2018.02

  16. 16.

    Hanley J., Koga K., 2018, Halogens in Terrestrial and Cosmic Geochemical Systems: Abundances, Geochemical Behaviors, and Analytical Methods. In: Harlov D., Aranovich L. (eds) The Role of Halogens in Terrestrial and Extraterrestrial Geochemical Processes. Springer Geochemistry. Springer, Cham, https://doi.org/10.1007/978-3-319-61667-4_2.

  17. 17.

    Hara, T., et al., 2018, In-situ Sr-Pb isotope geochemistry of lawsonite: A new method to investigate slab-fluids, Lithos, https://doi.org/10.1016/j.lithos.2018.09.001

  18. 18.

    Homrighausen, S., Hoernle, K., Geldmacher, J., Wartho, J-A., Portnyagin, M., Werner, R., can den Bogaards, P., Garbe-Schoenberg, D., 2018, Unexpected HIMU-type late-stage volcanism on the Walvis Ridge, EPSL, https://doi.org/10.1016/j.epsl.2018.03.049

  19. 19.

    Homrighausen, S., Hoernle, K., Hauff, F., Gedlnacher, J., Wartho, J-A., van den Bogaard, P., Garbe-Schoendberg, D., 2018, Global distribution of the HIMU end member: Formation through Archean plume-lid tectonics, Earth Science Reviews, vol 182, https://doi.org/10.1016/j.earscirev.2018.04.009

  20. 20.

    Homrighausen, S., Hoernle, K., Hauff, F., Wartho, J-A., van den Bogaard, P., Garbe-Scheonberg, D., 2018, New age and geochemical data from the Walvis Ridge: The temporal and spatial diversity of South Atlantic intraplate volcanism and its possible origin, GCA, https://doi.org/10.1016/j.gca.2018.09.002

  21. 21.

    Jiao, S., Zhang, Q., Zhou, Y., Cgen, W., Liu, X., Gopalakrishnan, G., 2018, Progress and challenges of big data research on petrology and geochemistry, Solid Earth Sciences, https://doi.org/10.1016/j.sesci.2018.06.002

  22. 22.

    Koepke, J., Botchamikov, R., Natland, J., 2018, Crystallization of late-stage MORB under varying water activities and redox conditions: Implications for the formation of highly evolved lavas and oxide gabbro in the ocean crust, Lithos, https://doi.org/10.1016/j.lithos.2018.10.001

  23. 23.

    Leuthold, J., Lissenberg, C., O’Driscoll, B., Karakas, O., Falloon, T., Klimentyeva, D., Ulmer, P., 2018, Partial Melting of Lower Oceanic Crust Gabbro: Constraints From Poikilitic Clinopyroxene Primocrysts, Frontiers in Earth Science, https://doi.org/10.3389/feart.2018.00015

  24. 24.

    Li, Y., Wang, G., Santosh, M., Wang, J., Dong, P. Li, H., 2018, Supra-subduction zone ophiolites from Inner Mongolia, North China: Implications for the tectonic history of the southern Central Asian Orogenic Belt, Gondwana Res., https://doi.org/10.1016/j.gr.2018.02.018

  25. 25.

    Li, B., Shi, X., Wang, J., Yan, Q., Liu, C., 2018, Tectonic environments and local geologic controls of potential hydrothermal fields along the Southern Mid-Atlantic Ridge (12–14°S), Journal of Marine Systems, https://doi.org/10.1016/j.jmarsys.2018.02.003.

  26. 26.

    Lund, D., Seely, E., Asimow, P., Lewis, M., McCart, S., Mudahy, A., 2018, Anomalous Pacific-Antarctic Ridge volcanism precedes glacial Termination 2, G-Cubed, https://doi.org/10.1002/2017gc007341

  27. 27.

    Manuella, F., Scribano, V., Carbone, F., 2018, Abyssal serpentinites as gigantic factories of marine salts and oil, Marine and Petroleum Geology, https://doi.org/10.1016/j.marpetgeo.2018.03.026

  28. 28.

    McNamara, A.K., 2018, A review of large low shear velocity provinces and ultra low velocity zones, Tectonophysics, https://doi.org/10.1016/j.tecto.2018.04.015

  29. 29.

    Melnik, O., Bindeman, I., 2018 Modeling of trace elemental zoning patterns in accessory minerals with emphasis on the origin of micrometer-scale oscillatory zoning in zircon. American Mineralogist, https://doi.org/10.2138/am-2018-6182

  30. 30.

    Menke, W., 2018, Chapter 10: Factor Analysis, Geophysical Data Analysis (Forth Edition), pp. 207–222

  31. 31.

    Mukhopadhyay, R., Ghosh, A., Iher, S., 2018, Chapter 3: Volcanics, The Indian Ocean Nodule Field (second Edition), pp. 71–46, https://doi.org/10.1016/b978-0-12-805474-1.00003-8

  32. 32.

    Putirka, K., Tao, Y., K.R. Hari, M. R. Perfit, M. G. Jackson, R. Arevalo; The mantle source of thermal plumes: Trace and minor elements in olivine and major oxides of primitive liquids (and why the olivine compositions don’t matter). American Mineralogist; 103(8): 1253–1270. https://doi.org/10.2138/am-2018-6192

  33. 33.

    Ranaweera, L., Ota, T., Moriguti, T., Tanaka, R., Nakamura, E., 2018, Circa 1 Ga sub-seafloor hydrothermal alteration imprinted on the Horoman peridotite massif, Scientific Reports, https://doi.org/10.1038/s41598-018-28219-x

  34. 34.

    Roubinet, C., Moreira, M., 2017, Atmospheric noble gases in Mid-Ocean Ridge Basalts: Identification of atmospheric contamination processes, GCA, https://doi.org/10.1016/j.gca.2017.10.027

  35. 35.

    Saccani, E., Dilek, Y., Photiades, A., 2018, Time-progressive mantle-melt evolution and magma production in a Tethyan marginal sea: A case study of the Albanide-Hellenide ophiolites, https://doi.org/10.1130/l602.1

  36. 36.

    Secchiari, A., Montanini, A., Bosch, D. et al., 2018, The contrasting geochemical message from the New Caledonia gabbronorites: insights on depletion and contamination processes of the sub-arc mantle in a nascent arc setting Contrib Mineral Petrol 173: 66. https://doi.org/10.1007/s00410-018-1496-8

  37. 37.

    Sisson, T.W. & Kelemen, P.B., 2018, Near-solidus melts of MORB + 4 wt% H2O at 0.8–2.8 GPa applied to issues of subduction magmatism and continent formation Contrib Mineral Petrol 173: 70. https://doi.org/10.1007/s00410-018-1494-x

  38. 38.

    Triantafyllou, A., Berger, J., Baele, J., Bruguier, O., Diot, H., Ennih, N., et al., 2018, Intra-oceanic arc growth driven by magmatic and tectonic processes recorded in the Neoproterozoic Bougmane arc complex (Anti-Atlas, Morocco). Precambrian Research, https://doi.org/10.1016/j.precamres.2017.10.022

  39. 39.

    Varas-Reus, M., Garrido, C., Marchesi, C., Bosch, D., Hidas, K., 2018,Genesis of Ultra-High Pressure Garnet Pyroxenites in Orogenic Peridotites and its Bearing on the Compositional Heterogeneity of the Earth’s Mantle, GCA, https://doi.org/10.1016/j.gca.2018.04.033

  40. 40.

    Vigneresse, JL. & Truche, L. Chemical descriptors for describing physico-chemical properties with applications to geosciencesJ Mol Model (2018) 24: 231. https://doi.org/10.1007/s00894-018-3770-0

  41. 41.

    Voynets, A., Kostitsyn, Y., Pevzner, M., Goltsman, Y. Perepelov, 2018, Sr–Nd isotopic composition of Neogene-Quaternary volcanic rocks of the Sredinny Range, Kamchatka: Implications for magma generation in the back-arc, 10th Biannual Workshop on Japan-Kamchatka-Alaska Subduction Processes (JKASP-2018)

  42. 42.

    Ware, B., Jourdan, F., Merle, R., Chiaradia, M., Hodges, K., 2018, The Kalkarindji Large Igneous Province, Australia: Petrogenesis of the oldest and most compositionally homogenous province of the Phanerozoic, Journal of Petrology, https://doi.org/10.1093/petrology/egy040

  43. 43.

    Winslow, H., 2018, A study of Pleistocene volcano Manantial Pelado, Chile: Unique access to a long history of primitive magmas in the thickened crust of the Southern Andes, Master’s Thesis, University of Nevada, Reno, 113 pp.

  44. 44.

    Xia, L., Lia, X., 2018, Basalt geochemistry as a diagnostic indicator of tectonic setting, Gondwana Research, https://doi.org/10.1016/j.gr.2018.08.006

  45. 45.

    Yao, J-H., Zhu, W-G., Li, C., Zhong, H., Bai, Z-J, Ripley, E., Li, C., 2018, Petrogenesis and Ore Genesis of the Lengshuiqing Magmatic Sulfide Deposit in Southwest China: Constraints from Chalcophile Elements (PGE, Se) and Sr–Nd–Os–S Isotopes, Economic Geology, https://doi.org/10.5382/econgeo.2018.4566

  46. 46.

    Yoshida, K., Kuwatani, T., Yasumoto, A., Haraguchi, S.,Ueki, K., Iwamori, H., 2018, GEOFCM: a new method for statistical classification of geochemical data using spatial contextual information, J. Mineralological and Petrological Sciences, https://doi.org/10.2465/jmps.171127

  47. 47.

    Yu, Y., Sun, M., Yuan, C., Zhao, G., Huang, X-L, Rojas-Agramonte, Y., Chen, Q., 2018, Evolution of the middle Paleozoic magmatism in the Chinese Altai: Constraints on the crustal differentiation at shallow depth in the accretionary orogen, Journal of Asian Earth Sciences, https://doi.org/10.1016/j.jseaes.2018.07.026

  48. 48.

    Zhang, G., Luo, Q., Zhao, J., Jackson, M., Guo, L., Zhong, L., 2018 Geochemical nature of sub-ridge mantle and opening dynamics of the South China Sea. Earth and Planetary Science Letters, https://doi.org/10.1016/j.epsl.2018.02.040

  49. 49.

    Zhang, H., Zhu, Y-F., Geology and geochemistry of pillow basalt in the Huilvshan region (west Junggar, China): Implications for magma source and tectonic setting, Can J Earth Sci, https://doi.org/10.1139/cjes-2018-0090

  50. 50.

    Zhang, W., Zeng, Z., Cui, L., Yin, X., 2018, Geochemical Constrains on MORB Composition and Magma Sources at East Pacific Rise Between 1°S and 2°S, J. Ocean Univ. China, https://doi.org/10.1007/s11802-018-3223-5

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, Y., Bai, Y., Tian, D. et al. A review of geoanalytical databases. Acta Geochim 38, 718–733 (2019). https://doi.org/10.1007/s11631-019-00323-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-019-00323-3

Keywords

Navigation