Skip to main content
Log in

The effects of soil sand contents on characteristics of humic acids along soil profiles

  • Original Article
  • Published:
Acta Geochimica Aims and scope Submit manuscript

Abstract

It is generally accepted that the compositions and properties of soil organic matter (SOM) are influenced by many factors. In order to reveal the effects of soil texture on characteristics and dynamics of SOM and its sub-fraction, humic acid (HA), along two soil profiles, a yellow soil profile and a purplish soil profile, under the same climate and vegetation conditions were determined. Results indicate that the decomposition and humification degrees of SOM and HA of the purplish soils are higher than those of the corresponding yellow soils indicated by A/O–A ratios of HAs, TOCs and HA yields of bulk soil samples, nevertheless, the development degree of the purplish soil is lower than that of the yellow soil. The variations of E4/E6 ratios of HAs along the soil profiles indicate the overall molecular sizes of HAs decreased downward along the soil profiles. A/O–A ratios of HAs decreased downward along both the soil profiles indicate that humification processes decrease downward along both the soil profiles. Leaching of SOM shows significant effects on the distribution and characteristics of HAs in the yellow soil profile but the purplish soil profile, which is consistent with the higher hydrophobicity of HAs in purplish soils, shows that the distribution characteristics of SOM along the soil profiles are a complex result of the combination of soil texture and characteristics of SOM itself. The remarkably different sand contents are concluded tentatively as one of reasons to the different distributions and dynamics of HAs along the soil profiles, however, to profoundly understand the evolution and transport of SOM along soil profiles needs more researches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abakumov E, Trubetskoj O, Demin D, Celi L, Cerli C, Trubetskaya O (2010) Humic acid characteristics in podzol soil chronosequence. Chem Ecol 26:59–66. doi:10.1080/02757540.2010.497758

    Article  Google Scholar 

  • Alvarez-Arteaga G, Krasilnikov P, Garcia-Calderon NE (2012) Vertical distribution and soil organic matter composition in a montane cloud forest, Oaxaca, Mexico. Eur J For Res 131:1643–1651. doi:10.1007/s10342-012-0643-4

    Article  Google Scholar 

  • Amalfitano C, Quezada RA, Wilson MA, Hanna JV (1995) Chemical-composition of humic acids—a comparison with precursor light fraction litter from different vegetations using spectroscopic techniques. Soil Sci 159:391–401. doi:10.1097/00010694-199506000-00004

    Article  Google Scholar 

  • Arshad MA, Schnitzer M (1989) Chemical characteristics of humic acids from 5 soils in Kenya. Z Pflanzenähr Bodenkd 152:11–16. doi:10.1002/jpln.19891520103

    Article  Google Scholar 

  • Baes AU, Bloom PR (1990) Fulvic-acid ultraviolet-visible spectra—influence of solvent and pH. Soil Sci Soc Am J 54:1248–1254

    Article  Google Scholar 

  • Baldock JA, Skjemstad JO (2000) Role of the soil matrix and minerals in protecting natural organic materials against biological attack. Org Geochem 31:697–710. doi:10.1016/s0146-6380(00)00049-8

    Article  Google Scholar 

  • Baldock JA, Oades JM, Waters AG, Peng X, Vassallo AM, Wilson MA (1992) Aspects of the chemical structure of soil organic materials as revealed by solid-state 13C NMR-spectroscopy. Biogeochemistry 16:1–42

    Article  Google Scholar 

  • Baldock JA, Oades JM, Nelson PN, Skene TM, Golchin A, Clarke P (1997) Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Aust J Soil Res 35:1061–1083. doi:10.1071/s97004

    Article  Google Scholar 

  • Bayer C, Martin-Neto L, Mielniczuk J, Ceretta CA (2000) Effect of no-till cropping systems on soil organic matter in a sandy clay loam acrisol from Southern Brazil monitored by electron spin resonance and nuclear magnetic resonance. Soil Tillage Res 53:95–104. doi:10.1016/s0167-1987(99)00088-4

    Article  Google Scholar 

  • Bayer C, Martin-Neto L, Mielniczuk J, Saab SD, Milori DMP, Bagnato VS (2002) Tillage and cropping system effects on soil humic acid characteristics as determined by electron spin resonance and fluorescence spectroscopies. Geoderma 105:81–92. doi:10.1016/s0016-7061(01)00093-3

    Article  Google Scholar 

  • Bracewell JM, Robertson GW (1987) Characteristics of soil organic-matter in temperate soils by Curie-point pyrolysis mass-spectrometry. 3. Transformations occurring in surface organic horizons. Geoderma 40:333–344. doi:10.1016/0016-7061(87)90042-5

    Article  Google Scholar 

  • Brunetti G, Farrag K, Plaza C, Senesi N (2012) Advanced techniques for characterization of organic matter from anaerobically digested grapemarc distillery effluents and amended soils. Environ Monit Assess 184:2079–2089. doi:10.1007/s10661-011-2101-z

    Article  Google Scholar 

  • Buurman P, Nierop KGJ, Kaal J, Senesi N (2009) Analytical pyrolysis and thermally assisted hydrolysis and methylation of EUROSOIL humic acid samples—a key to their source. Geoderma 150:10–22. doi:10.1016/j.geoderma.2008.12.012

    Article  Google Scholar 

  • Chen Y, Senesi N, Schnitzer M (1977) Information provided on humic substances by E4/E6 ratios. Soil Sci Soc Am J 41:352–358

    Article  Google Scholar 

  • Chin YP, Aiken G, Oloughlin E (1994) Molecular-weight, polydispersity, and spectroscopic properties of aquatic humic substances. Environ Sci Technol 28:1853–1858. doi:10.1021/es00060a015

    Article  Google Scholar 

  • Conte P, Spaccini R, Chiarella M, Piccolo A (2003) Chemical properties of humic substances in soils of an Italian volcanic system. Geoderma 117:243–250. doi:10.1016/s0016-7061(03)00126-5

    Article  Google Scholar 

  • Conte P, Spaccini R, Piccolo A (2006) Advanced CPMAS-C-13 NMR techniques for molecular characterization of size-separated fractions from a soil humic acid. Anal Bioanal Chem 386:382–390. doi:10.1007/s00216-006-0637-5

    Article  Google Scholar 

  • Dai XY, Ping CL, Michaelson GJ (2002) Characterizing soil organic matter in Arctic tundra soils by different analytical approaches. Org Geochem 33:407–419. doi:10.1016/s0146-6380(02)00012-8

    Article  Google Scholar 

  • Dick DP, Burba P, Herzog H (1999) Influence of extractant and soil type on molecular characteristics of humic substances from two Brazilian soils. J Braz Chem Soc 10:140–145

    Google Scholar 

  • Dick DP, Gonçalves CN, Dalmolin RSD, Knicker H, Klamt E, Kögel-Knabnerc I, Simões ML, Martin-Neto L (2005) Characteristics of soil organic matter of different Brazilian ferralsols under native vegetation as a function of soil depth. Geoderma 124:319–333. doi:10.1016/j.geoderma.2004.05.008

    Article  Google Scholar 

  • Fabbri D, Mongardi M, Montanari L, Galletti GC, Chiavari G, Scotti R (1998) Comparison between CP/MAS 13C-NMR and pyrolysis-GC/MS in the structural characterization of humins and humic acids of soil and sediments. Fresenius J Anal Chem 362:299–306. doi:10.1007/s002160051078

    Article  Google Scholar 

  • Fooken U, Liebezeit G (2000) Distinction of marine and terrestrial origin of humic acids in North Sea surface sediments by absorption spectroscopy. Mar Geol 164:173–181. doi:10.1016/s0025-3227(99)00133-4

    Article  Google Scholar 

  • Galantini JA, Senesi N, Brunetti G, Rosell R (2004) Influence of texture on organic matter distribution and quality and nitrogen and sulphur status in semiarid Pampean grassland soils of Argentina. Geoderma 123:143–152. doi:10.1016/j.geoderma.2004.02.008

    Article  Google Scholar 

  • Giovanela M, Crespo JS, Antunes M, Adametti DS, Fernandes AN, Barison A, Silva CWP, Régis Guégan, Mikael Motelica-Heino (2010) Chemical and spectroscopic characterization of humic acids extracted from the bottom sediments of a Brazilian subtropical microbasin. J Mol Struct 981:111–119. doi:10.1016/j.molstruc.2010.07.038

    Article  Google Scholar 

  • Gondar D, Lopez R, Fiol S, Antelo JM, Arce F (2005) Characterization and acid–base properties of fulvic and humic acids isolated from two horizons of an ombrotrophic peat bog. Geoderma 126:367–374. doi:10.1016/j.geoderma.2004.10.006

    Article  Google Scholar 

  • Gonzalezvila FJ, Lentz H (1976) FT-C13 Nuclear magnetic-resonance spectra of natural humic substances. Biochem Biophys Res Commun 72:1063–1070. doi:10.1016/s0006-291x(76)80240-9

    Article  Google Scholar 

  • Grasset L, Ambles A (1998) Structural study of soil humic acids and humin using a new preparative thermochemolysis technique. J Anal Appl Pyrolysis 47:1–12. doi:10.1016/s0165-2370(98)00084-9

    Article  Google Scholar 

  • Grasset L, Amblès A (1998) Structure of humin and humic acid from an acid soil as revealed by phase transfer catalyzed hydrolysis. Org Geochem 29:881–891. doi:10.1016/S0146-6380(98)00193-4

    Article  Google Scholar 

  • Gressel N, McColl JG, Preston CM, Newman RH, Powers RF (1996) Linkages between phosphorus transformations and carbon decomposition in a forest soil. Biogeochemistry 33:97–123. doi:10.1007/bf02181034

    Article  Google Scholar 

  • Guggenberger G, Haider KM (2002) Effect of mineral colloids on biogeochemical cycling of C, N, P, and S in soil. In: Huang PM, Bollag JM, Senesi N (eds) Interactions between soil particles and microorganisms, impact on the terrestrial ecosystem. Wiley, Chichester, pp 267–322

    Google Scholar 

  • Hassink J, Bouwman LA, Zwart KB, Brussaard L (1993) Relationships between habitable pore-space, soil biota and mineralization rates in grassland soils. Soil Biol Biochem 25:47–55. doi:10.1016/0038-0717(93)90240-c

    Article  Google Scholar 

  • Hatcher PG, Rowan R, Mattingly MA (1980) 1H and 13C NMR of marine humic acids. Org Geochem 2:77–85

    Article  Google Scholar 

  • Hempfling R, Ziegler F, Zech W, Schulten HR (1987) Litter decomposition and humification in acidic forest soils studied by chemical degradation, IR and NMR-spectroscopy and pyrolysis field-ionization mass-spectrometry. Z Pflanzenähr Bodenkd 150:179–186. doi:10.1002/jpln.19871500311

    Article  Google Scholar 

  • Jastrow JD (1996) Soil aggregate formation and the accrual of particulate and mineral-associated organic matter. Soil Biol Biochem 28:665–676. doi:10.1016/0038-0717(95)00159-x

    Article  Google Scholar 

  • Jien SH, Chen TH, Chiu CY (2011) Effects of afforestation on soil organic matter characteristics under subtropical forests with low elevation. J For Res 16:275–283. doi:10.1007/s10310-010-0231-8

    Article  Google Scholar 

  • Kalbitz K, Geyer W, Geyer S (1999) Spectroscopic properties of dissolved humic substances—a reflection of land use history in a fen area. Biogeochemistry 47:219–238. doi:10.1007/bf00994924

    Google Scholar 

  • Kogelknabner I, Zech W, Hatcher PG (1988) Chemical-composition of the organic-matter in forest soils—the humus layer. Z Pflanzenähr Bodenkd 151:331–340. doi:10.1002/jpln.19881510512

    Article  Google Scholar 

  • Kogelknabner I, Hatcher PG, Zech W (1991) Chemical structural studies of forest soil humic acids—aromatic carbon fraction. Soil Sci Soc Am J 55:241–247

    Article  Google Scholar 

  • Korshin GV, Li CW, Benjamin MM (1997) Monitoring the properties of natural organic matter through UV spectroscopy: a consistent theory. Water Res 31:1787–1795. doi:10.1016/s0043-1354(97)00006-7

    Article  Google Scholar 

  • Krosshavn M, Bjorgum JO, Krane J, Steinnes E (1990) Chemical-structure of terrestrial humus materials formed from different vegetation characterized by solid-state C-13 NMR with CP-MAS techniques. J Soil Sci 41:371–377

    Article  Google Scholar 

  • Kukkonen J (1992) Effects of lignin and chlorolignin in pulp-mill effluents on the binding and bioavailability of hydrophobic organic pollutants. Water Res 26:1523–1532. doi:10.1016/0043-1354(92)90073-d

    Article  Google Scholar 

  • Ladd JN, Amato M, Oades JM (1985) Decomposition of plant-material in Australian soils. 3. Residual organic and microbial biomass-C and biomass-N from isotope-labeled legume material and soil organic-matter, decomposing under field conditions. Aust J Soil Res 23:603–611. doi:10.1071/sr9850603

    Article  Google Scholar 

  • Lawrence CR, Harden JW, Xu XM, Schulz MS, Trumbore SE (2015) Long-term controls on soil organic carbon with depth and time: a case study from the Cowlitz River Chronosequence, WA, USA. Geoderma 247:73–87. doi:10.1016/j.geoderma.2015.02.005

    Article  Google Scholar 

  • Ma L, Xiao B, Di X, Huang W, Wang S (2015) Characteristics and distributions of humic acids in two soil profiles of the southwest China Karst area. Acta Geochim. doi:10.1007/s11631-015-0086-y

    Google Scholar 

  • Marinari S, Dell’Abate MT, Brunetti G, Dazzi C (2010) Differences of stabilized organic carbon fractions and microbiological activity along Mediterranean vertisols and alfisols profiles. Geoderma 156:379–388. doi:10.1016/j.geoderma.2010.03.007

    Article  Google Scholar 

  • Nadelhoffer DJ, Giblin AE, Shaver GR, Linkins AE (1992) Microbial processes and plant nutrient availability in arctic soils. In: Chapin FSI, Jefferies RL, Reynolds JF, Shaver GR, Svoboda J, Chu EW (eds) Arctic ecosystems in a changing climate: an ecophysiological perspective. Academic, San Diego, pp 281–301

    Chapter  Google Scholar 

  • Oades JM (1995) Recent advances in organomineral interactions: implications for carbon cycling and soil structure. Environ Impact Soil Compon Interact 1:119–134

    Google Scholar 

  • Orlov DS (1998) Organic substances of Russian soils. Eurasian Soil Sci 31:946–953

    Google Scholar 

  • Parfitt RL, Yuan G, Theng BKG (1999) A 13C-NMR study of the interactions of soil organic matter with aluminium and allophane in podzols. Eur J Soil Sci 50:695–700. doi:10.1046/j.1365-2389.1999.00274.x

    Article  Google Scholar 

  • Peschel G, Wildt T (1988) Humic substances of natural and anthropogeneous origin. Water Res 22:105–108. doi:10.1016/0043-1354(88)90136-4

    Article  Google Scholar 

  • Peuravuori J, Pihlaja K (1997) Molecular size distribution and spectroscopic properties of aquatic humic substances. Anal Chim Acta 337:133–149. doi:10.1016/s0003-2670(96)00412-6

    Article  Google Scholar 

  • Preston C (1991) Using NMR to characterize the development of soil organic matter with varying climate and vegetation. In International Atomic Energy Agency, Food and Agriculture Organization of the United Nations (eds) Stable isotopes in plant nutrition, soil fertility and environmental studies. International Atomic Energy Agency, Vienna

  • Preston CM (1996) Applications of NMR to soil organic matter analysis: history and prospects. Soil Sci 161:144–166. doi:10.1097/00010694-199603000-00002

    Article  Google Scholar 

  • Preston CM, Hempfling R, Schulten HR, Schnitzer M, Trofymow JA, Axelson DE (1994) Characterization of organic-matter in a forest soil of coastal british-columbia by NMR and pyrolysis-field ionization mass-spectrometry. Plant Soil 158:69–82. doi:10.1007/bf00007919

    Article  Google Scholar 

  • Qu KY, Feng HM, Dai LM, Zhou L (2009) Profile distribution and storage of soil organic carbon of main forest types in eastern mountainous region of Liaoning. Chin J Soil Sci 40:1316–1320

    Google Scholar 

  • Quideau SA, Chadwick OA, Benesi A, Graham RC, Anderson MA (2001) A direct link between forest vegetation type and soil organic matter composition. Geoderma 104:41–60. doi:10.1016/s0016-7061(01)00055-6

    Article  Google Scholar 

  • Rumpel C, Kogel-Knabner I (2011) Deep soil organic matter—a key but poorly understood component of terrestrial C cycle. Plant Soil 338:143–158. doi:10.1007/s11104-010-0391-5

    Article  Google Scholar 

  • Sanchez PA, Logan TJ (1992) Myths and science about the chemistry and fertility of soils in the tropics. In: Lal R, Sanchez PA (eds) Myths and science of soil of the Tropics, vol 29. SSSA, Madison, pp 35–46

    Google Scholar 

  • Schnitzer M, Levesque M (1979) Electron-spin resonance as a guide to the degree of humification of peats. Soil Sci 127:140–145. doi:10.1097/00010694-197903000-00003

    Article  Google Scholar 

  • Schoening I, Morgenroth G, Kogel-Knabner I (2005) O/N-alkyl and alkyl C are stabilised in fine particle size fractions of forest soils. Biogeochemistry 73:475–497. doi:10.1007/s10533-004-0897-0

    Article  Google Scholar 

  • Schulten HR, Schnitzer M (1997) Chemical model structures for soil organic matter and soils. Soil Sci 162:115–130. doi:10.1097/00010694-199702000-00005

    Article  Google Scholar 

  • Senesi N, Miano TM, Brunetti G (1996) Humic-like substances in organic amendments and effects on native soil humic substances. In: Piccolo A (ed) Humic substances in terrestrial ecosystems. Elsevier, Amsterdam, pp 531–593

    Chapter  Google Scholar 

  • Simpson AJ, McNally DJ, Simpson MJ (2011) NMR spectroscopy in environmental research: from molecular interactions to global processes. Prog Nucl Magn Reson Spectrosc 58:97–175. doi:10.1016/j.pnmrs.2010.09.001

    Article  Google Scholar 

  • Skjemstad JO, Clarke P, Taylor JA, Oades JM, Newman RH (1994) The removal of magnetic-materials from surface soils—a solid-state C-13 CP/MAS NMR-study. Aust J Soil Res 32:1215–1229. doi:10.1071/sr9941215

    Article  Google Scholar 

  • Spaccini R, Mbagwu JSC, Conte P, Piccolo A (2006) Changes of humic substances characteristics from forested to cultivated soils in Ethiopia. Geoderma 132:9–19. doi:10.1016/j.geoderma.2005.04.015

    Article  Google Scholar 

  • Stevenson FJ (1994) Humus chemistry: genesis, composition, reactions, 2nd edn. Wiley, New York

    Google Scholar 

  • Stevenson FJ, Goh KM (1971) Infrared spectra of humic acids and related substances. Geochim Cosmochim Acta 35:471. doi:10.1016/0016-7037(71)90044-5

    Article  Google Scholar 

  • Traversa A, Said-Pullicino D, D’Orazio V, Gigliotti G, Senesi N (2011) Properties of humic acids in Mediterranean forest soils (Southern Italy): influence of different plant covering Eur. J For Res 130:1045–1054. doi:10.1007/s10342-011-0491-7

    Google Scholar 

  • Traversa A, D’Orazio V, Mezzapesa GN, Bonifacio E, Farrag K, Senesi N, Brunetti G (2014) Chemical and spectroscopic characteristics of humic acids and dissolved organic matter along two alfisol profiles. Chemosphere 111:184–194. doi:10.1016/j.chemosphere.2014.03.063

    Article  Google Scholar 

  • Ussiri DAN, Johnson CE (2003) Characterization of organic matter in a northern hardwood forest soil by C-13 NMR spectroscopy and chemical methods. Geoderma 111:123–149. doi:10.1016/s0016-7061(02)00257-4

    Article  Google Scholar 

  • Wattel-Koekkoek EJW, van Genuchten PPL, Buurman P, van Lagen B (2001) Amount and composition of clay-associated soil organic matter in a range of kaolinitic and smectitic soils. Geoderma 99:27–49. doi:10.1016/s0016-7061(00)00062-8

    Article  Google Scholar 

  • Wu XG, Guo JP, Yanf XY, Tian XP (2011) Soil organic carbon storage and profile inventory in the different vegetation types of Luya Mountain. Acta Ecol Sin 31:3009–3019

    Google Scholar 

  • Yang Y, Shu L, Wang XL, Xing BS, Tao S (2011) Impact of de-ashing humic acid and humin on organic matter structural properties and sorption mechanisms of phenanthrene. Environ Sci Technol 45:3996–4002. doi:10.1021/es2003149

    Article  Google Scholar 

  • Zech W, Ziegler F, Kogelknabner I, Haumaier L (1992) Humic substances distribution and transformation in forest soils. Sci Total Environ 118:155–174

    Article  Google Scholar 

  • Zech W et al (1997) Factors controlling humification and mineralization of soil organic matter in the tropics. Geoderma 79:117–161. doi:10.1016/s0016-7061(97)00040-2

    Article  Google Scholar 

  • Zhang JJ, Hu F, Li HX, Gao Q, Song XY, Ke XK, Wang LC (2011) Effects of earthworm activity on humus composition and humic acid characteristics of soil in a maize residue amended rice-wheat rotation agroecosystem. Appl Soil Ecol 51:1–8. doi:10.1016/j.apsoil.2011.08.004

    Article  Google Scholar 

Download references

Acknowledgments

This study was financially supported by National Major Research Program of China (2013CB956702), the National Science Foundation of China (41273149, 41173129), the Science Foundation of Guizhou Province (20113109) and the 100-Talent Program of CAS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baohua Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Di, X., Dong, H., An, X. et al. The effects of soil sand contents on characteristics of humic acids along soil profiles. Acta Geochim 35, 251–261 (2016). https://doi.org/10.1007/s11631-016-0114-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-016-0114-6

Keywords

Navigation