Skip to main content
Log in

A review on the aging phenomena of organic components and their mass transfer through the NAPL interfacial phase

  • Published:
Chinese Journal of Geochemistry Aims and scope Submit manuscript

Abstract

It occurs worldwide that the organic components of non-aqueous phase liquid (NAPL) enter the porous medium and become the source of contaminants in the subsurface. The transport of the organic components through NAPL interphase into the aqueous phase and the subsurface determines the extent of contamination, the persistence of residual NAPL phases and the techniques of remediation. During the transport process the NAPL interphase may experience “aging”, a physical and chemical change when NAPL is exposed to aqueous and or gaseous phases. This aging process alters vice versa the mass transfer behaviour of the organic contaminants in the porous medium.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Acevedo S., Escobar G., Ranaudo M.A., Khazen J., Borges B., Pereira J.C., and Mendez B. (1999) Isolation and characterization of low and high molecular weight acidic compounds from Cerro Negro extraheavy crude oil. Role of these acids in the interfacial properties of the crude oil emulsions [J]. Energy & Fuels. 13, 333–335.

    Article  Google Scholar 

  • Acevedo S., Ranaudo M.A., Garcia C., Castillo J., and Fernandez A. (2003) Adsorption of asphaltenes at the toluene-silica interface: A kinetic study [J]. Energy & Fuels. 17, 257–261.

    Article  Google Scholar 

  • Ahn B.S. and Lee W.K. (1990) Simulation and experimental analysis of mass transfer in a liquid-liquid stirred tank extractor [J]. Industrial & Engineering Chemistry Research. 29, 1927–1935.

    Article  Google Scholar 

  • Alboudwarej H., Beck J., Svrcek W.Y., Yarranton H.W., and Akbarzadeh K. (2002) Sensitivity of asphaltene properties to separation techniques [J]. Energy & Fuels. 16, 462–469.

    Article  Google Scholar 

  • Alboudwarej H., Pole D., Svrcek W.Y., and Yarranton H.W. (2005) Adsorption of asphaltenes on metals [J]. Industrial & Engineering Chemistry Research. 44, 5585–5592.

    Article  Google Scholar 

  • Alshafie M. and Ghoshal S. (2004) The role of interfacial films in the mass transfer of naphthalene from creosotes to water [J]. Journal of Contaminant Hydrology. 74, 283–298.

    Article  Google Scholar 

  • Altarawneh M., Dlugogorski B.Z., Kennedy E.M., and Mackie J.C. (2006) Quantum chemical study of low temperature oxidation mechanism of dibenzofuran [J]. Journal of Physical Chemistry A. 110, 13560–13567.

    Article  Google Scholar 

  • Andersen S.I., del Rio J.M., Khvostitchenko D., Shakir S., and Lira-Galeana C. (2001) Interaction and solubilization of water by petroleum asphaltenes in organic solution [J]. Langmuir. 17, 307–313.

    Article  Google Scholar 

  • Artok L., Su Y., Hirose Y., Hosokawa M., Murata S., and Nomura M. (1999) Structure and reactivity of petroleum-derived asphaltene [J]. Energy & Fuels. 13, 287–296.

    Article  Google Scholar 

  • ASTM (2001) Standard methods for separation of asphalt into four fractions [Z]. Annual Book of ASTM Standards.

    Google Scholar 

  • ASTM (2003) Standard test method for characteristic groups in rubber extender and processing oils and other petroleum-derived oils by the clay-gel absorption chromatographic method [Z]. Annual Book of ASTM Standards.

    Google Scholar 

  • Baik J.S. and Lee N.H. (2006) Mechanistic studies on the O2-mediated oxidation of olefins in the presence of (Schiff-base) Mn(III) catalyst and NaBH4 [J]. Bulletin of the Korean Chemical Society. 27, 765–768.

    Article  Google Scholar 

  • Barranco F.T. and Dawson H.E. (1999) Influence of aqueous pH on the interfacial properties of coal tar [J]. Environmental Science & Technology. 33, 1598–1603.

    Article  Google Scholar 

  • Batts B.D. and Fathoni A.Z. (1991) A literature review on fuel stability studies with particular emphasis on diesel oil [J]. Energy & Fuels. 5, 2–21.

    Article  Google Scholar 

  • Benhabib K., Simonnot M.O., and Sardin M. (2006) PAHs and organic matter partitioning and mass transfer from coal tar particles to water [J]. Environmental Science & Technology. 40, 6038–6043.

    Article  Google Scholar 

  • Bennett C.O. and Myers J.E. (1981) Momentum, Heat and Mass Transfer (3rd ed.) [M].

    Google Scholar 

  • Bermejo J., Fernandez A.L., Prada V., Granda M., and Menendez R. (1999) Monitoring the synthesis of new pitches from coal tar and its fractions by chromatography and related techniques [J]. Journal of Chromatography A. 849, 507–519.

    Article  Google Scholar 

  • Branco V.A.M., Mansoori G.A., Xavier L.C.D.A., Park S.J., and Manafi H. (2001) Asphaltene flocculation and collapse from petroleum fluids [J]. Journal of Petroleum Science & Engineering. 32, 217–230.

    Article  Google Scholar 

  • Cho J., Annable M.D., and Rao P.S.C. (2005) Measured mass transfer coefficients in porous media using specific interfacial area [J]. Environmental Science and Technology. 39, 7883–7888.

    Article  Google Scholar 

  • Crespo J.L., Arenillas A., Vina J.A., Garcia R., Snape C.E., and Moinelo S.R. (2004) A study of mesophase formation from a low temperature coal tar pitch using formaldehyde as a promoter for polymerization [J]. Carbon. 42, 2762–2765.

    Article  Google Scholar 

  • Danckwerts P.V. (1951) Significance of liquid-film coefficients in gas absorption. Journal of Industrial and Engineering Chemistry [J]. 43, 1460–1467.

    Article  Google Scholar 

  • Dong Jingfeng, Chowdhry B., and Leharne S. (2004) Investigation of the wetting behavior of coal tar in three phase systems and its modification by poloxamine block copolymeric surfactants [J]. Environmental Science and Technology. 38, 594–602.

    Article  Google Scholar 

  • Dwarakanath V., Jackson R.E., and Pope G.A. (2002) Influence of wettability on the recovery of NAPLs from alluvium [J]. Environmental Science and Technology. 36, 227–231.

    Article  Google Scholar 

  • Espinat D., Fenistein D., Barre L., Frot D., and Briolant Y. (2004) Effects of temperature and pressure on asphaltenes agglomeration in toluene. A Light, X-ray, and neutron scattering investigation [J]. Energy & Fuels. 18, 1243–1249.

    Article  Google Scholar 

  • Esumi K., Tateishi D., Kudoh S., and Honda H. (1993) Carbonaceous gel obtained by oxidation of coal-tar pitch with hydrogen peroxide [J]. Carbon. 31, 1357–1358.

    Article  Google Scholar 

  • Faisal Anwar A.H.M., Tien T.H., Inoue Y., and Takagi F. (2003) Mass transfer correlation for nonaqueous phase liquid volatilization in porous media [J]. Environmental Science and Technology. 37, 1277–1283.

    Article  Google Scholar 

  • Fathoni A.Z. and Batts B.D. (1992) A literature review of fuel stability studies with a particular emphasis on shale oil [J]. Energy & Fuels. 6, 681–693.

    Article  Google Scholar 

  • Ghoshal S., Pasion C., and Alshafie M. (2004) Reduction of benzene and naphthalene mass transfer from crude oils by aging-induced interfacial films [J]. Environmental Science & Technology. 38, 2102–2110.

    Article  Google Scholar 

  • Ghoshal S., Ramaswami A., and Luthy R.G. (1996) Biodegradation of naphthalene from coal tar and heptamethylnonane in mixed batch systems [J]. Environmental Science and Technology. 30, 1282–1291.

    Article  Google Scholar 

  • Giavedoni M.D. and Deiber J.A. (1986) A model of mass transfer through a fluid-fluid interface [J]. Chemical Engineering Science. 41, 1921–1925.

    Article  Google Scholar 

  • Giese S.W., Powers S.E. (2002) Using polymer solutions to enhance recovery of mobile coal tar and creosote DNAPLs [J]. Journal of Contaminant Hydrology. 58, 147–167.

    Article  Google Scholar 

  • Giles H.N., Koenig J.W.J., Neihof R.A., Shay J.Y., and Woodward P.W. (1991) Stability of refined products and crude oil stored in large cavities in salt deposits: Biogeochemical aspects [J]. Energy & Fuels. 5, 602–608.

    Article  Google Scholar 

  • Gray M.R., Assenheimer G., Boddez L., and McCaffrey W.C. (2004) Melting and fluid behavior of asphaltene films at 200–500 DegC [J]. Energy & Fuels. 18, 1419–1423.

    Article  Google Scholar 

  • Harvey W., Yarranton H.A., and Rajesh Jakher (2000) Investigation of asphaltene association with vapor pressure osmometry and interfacial tension measurements [J]. Industrial and Engineering Chemistry Research. 39, 2916–2924.

    Article  Google Scholar 

  • Heyse E., Augustijn D., Rao P.S.C., and Delfino J.J. (2002) Nonaqueous phase liquid dissolution and soil organic matter sorption in porous media: Review of system similarities [J]. Critical Reviews in Environmental Science and Technology. 32, 337–397.

    Article  Google Scholar 

  • Higbie R. (1935) The rate of absorption of a pure gas into a still liquid during short periods of exposure [J]. Transactions of American Institute of Chemical Engineers. 31, 365–389.

    Google Scholar 

  • Holden P.A., LaMontagne M.G., Bruce A.K., Miller W.G., and Lindow S.E. (2002) Assessing the role of Pseudomonas aeruginosa surface-active gene expression in hexadecane biodegradation in sand [J]. Applied and Environmental Microbiology. 68, 2509–2518.

    Article  Google Scholar 

  • Hsu H.L. and Demond A.H. (2007) Influence of organic acid and organic base interactions on interfacial properties in NAPL-water systems [J]. Environmental Science & Technology. 41, 897–902.

    Article  Google Scholar 

  • Huesemann M.H., Hausmann T.S., and Fortman T.J., (2003) Assessment of bioavailability limitations during slurry biodegradation of petroleum hydrocarbons in aged soils [J]. Environmental Toxicology and Chemistry. 22, 2853–2860.

    Article  Google Scholar 

  • Hugaboom D.A. and Powers S.E. (2002) Recovery of coal tar and creosote from porous media: The influence of wettability [J]. Ground Water Monitoring and Remediation. 22, 83–90.

    Article  Google Scholar 

  • Jeribi M., Almir-Assad B., Langevin D., Henaut I., and Argillier J.F. (2002) Adsorption kinetics of asphaltenes at liquid interfaces [J]. Journal of Colloid and Interface Science. 256, 268–272.

    Article  Google Scholar 

  • Lewis W.K. (1916) The principles of countercurrent extraction [J]. Journal of Industrial and Engineering Chemistry (Washington D.C.). 8, 825–833.

    Article  Google Scholar 

  • Li Hui, Lee L.S., Schulze D.G., and Guest C.A. (2003) Role of soil manganese in the oxidation of aromatic amines [J]. Environmental Science and Technology. 37, 2686–2693.

    Article  Google Scholar 

  • Li Mingyuan, Xu Mingjin, Ma Yu, Wu Zhaoliang, and Christy A.A. (2002) Interfacial film properties of asphaltenes and resins [J]. Fuel. 81, 1847–1853.

    Article  Google Scholar 

  • Liu Jianjun, Zhang Liyan, Xu Zhenghe, and Masliyah Jacob (2006) Colloidal interactions between asphaltene surfaces in aqueous solutions [J]. Langmuir. 22, 1485–1492

    Article  Google Scholar 

  • Liu L., Wu F., Haderlein S., and Grathwohl P. (2013) etermination of the subcooled liquid solubilities of PAHs in partitioning batch experiments [J]. Earth Science Frontiers. 4, 123–126.

    Google Scholar 

  • Liu L., Maier U., Grathwohl P., and Haderlein S.B. (2012) contaminant mass transfer from NAPLs to water studied in a continuously stirred flow-through reactor [J]. Journal of Environmental Engineering. 138, 826–832.

    Article  Google Scholar 

  • Luthy R.G., Ramaswami A., Ghoshal S., and Merkel W. (1993) Interfacial films in coal tar nonaqueous-phase liquid-water systems [J]. Environmental Science and Technology. 27, 2914–2918.

    Article  Google Scholar 

  • Mahjoub B., Jayr E., Bayard R., and Gourdon R. (2000) Phase partition of organic pollutants between coal tar and water under variable experimental conditions [J]. Water Research. 34, 3551–3560.

    Article  Google Scholar 

  • Mansoori G.A. (2005) Principles of Nanotechnology: Molecular-Based Study of Condensed Matter in Small Systems [Z]. World Scientific Publishing Company.

    Google Scholar 

  • McBride M.B. (1987) Adsorption and oxidation of phenolic compounds by iron and manganese oxides [J]. Soil Science Society of America Journal. 51, 1466–1472.

    Article  Google Scholar 

  • Mijangos F., Varona F., and Villota N. (2006) Changes in solution color during phenol oxidation by Fenton Reagent [J]. Environmental Science & Technology. 40, 5538–5543.

    Article  Google Scholar 

  • Mukherji S., Peters C.A., Walter J., and Weber J.R. (1997) Mass transfer of polynuclear aromatic hydrocarbons from complex DNAPL mixtures [J]. Environmental Science and Technology. 31, 416–423.

    Article  Google Scholar 

  • Nelson E.C., Ghoshal S., Edwards J.C., Marsh G.X., and Luthy R.G. (1996) Chemical characterization of coal tar-water interfacial films [J]. Environmental Science and Technology. 30, 1014–1022.

    Article  Google Scholar 

  • Nie Liang, Xin Keke, and Li Wensheng (2007) Benzaldehyde synthesis via styrene oxidation by O2 over TiO2 and TiO2/SiO2 [J]. Catalysis Communications. 8, 488–492.

    Article  Google Scholar 

  • Ortiz E., Kraatz M., and Luthy R.G. (1999) Organic phase resistance to dissolution of polycyclic aromatic hydrocarbon compounds [J]. Environmental Science & Technology. 33, 235–242.

    Article  Google Scholar 

  • Peng P.A., Morales Izquierdo A., Lown E.M., and Strausz O.P. (1999) Chemical structure and biomarker content of Jinghan asphaltenes and kerogens [J]. Energy & Fuels. 13, 248–265.

    Article  Google Scholar 

  • Peters G.W.M., Zdravkov A.N., and Meijer H.E.H. (2005) Transient interfacial tension and dilatational rheology of diffuse polymer-polymer interfaces [J]. Journal of Chemical Physics. 122. 104901-1–104901-10.

    Article  Google Scholar 

  • Petrie R.A., Grossl P.R., and Sims R.C. (2002) Oxidation of pentachlorophenol in manganese oxide suspensions under controlled Eh and pH environments [J]. Environmental Science and Technology. 36, 3744–3748.

    Article  Google Scholar 

  • Pizzigallo M.D.R., Ruggiero P., Crecchio C., and Mininni R. (1995) Manganese and iron oxides as reactants for oxidation of chlorophenols [J]. Soil Science Society of America Journal. 59, 444–452.

    Article  Google Scholar 

  • Poteau S., Argillier J.F., Langevin D., Pincet F., and Perez E. (2005) Influence of pH on stability and dynamic properties of asphaltenes and other amphiphilic molecules at the oil-water interface [J]. Energy & Fuels. 19, 1337–1341.

    Article  Google Scholar 

  • Prandtl L. (1904) Ueber Flussigkeitsbewegung bei Kleiner Reiburg [R]. Verhandlungen des dritten Internationalen Mathematiker-Kongresses, Heidelberg, Germany.

    Google Scholar 

  • Rahmani N.H.G., Dabros T., and Masliyah J.H. (2005) Online optical monitoring of asphaltene aggregation [J]. Industrial & Engineering Chemistry Research. 44, 75–84.

    Article  Google Scholar 

  • Ramaswami A., Ghoshal S., and Luthy R.G. (1997) Mass transfer and bioavailability of PAH compounds in coal tar NAPL-slurry systems. 2. Experimental evaluations [J]. Environmental Science and Technology. 31, 2268–2276.

    Article  Google Scholar 

  • Ramaswami A. and Luthy R.G. (1997) Mass transfer and bioavailability of PAH compounds in coal tar NAPL-slurry systems. 1. Model development [J]. Environmental Science and Technology. 31, 2260–2267.

    Article  Google Scholar 

  • Reeves W.R., McDonald T.J., Bordelon N.R., George S.E., and Donnelly K.C. (2001) Impacts of aging on In Vivo and In Vitro measurements of soil-bound polycyclic aromatic hydrocarbon availability [J]. Environmental Science and Technology. 35, 1637–1643.

    Article  Google Scholar 

  • Schluep M., Imboden D.M., Galli R., and Zeyer J. (2001) Mechanisms affecting the dissolution of nonaqueous phase liquids into the aqueous phase in slow-stirring batch systems [J]. Environmental Toxicology and Chemistry. 20, 459–466.

    Article  Google Scholar 

  • Schwarzenbach R.P., Gschwend P.M., and Imboden D.M. (2003) Environmental Oragnic Chemistry [M]. John Wiley & Sons, New Jersey.

    Google Scholar 

  • Spiecker P.M. and Kilpatrick P.K. (2004) Interfacial rheology of petroleum asphaltenes at the oil-water interface [J]. Langmuir. 20, 4022–4032.

    Article  Google Scholar 

  • Stone A.T. and Morgan J.J. (1984) Reduction and dissolution of manganese( III) and manganese(IV) oxides by organics: 2. Survey of the reactivity of organics [J]. Environmental Science and Technology. 18, 617–624.

    Article  Google Scholar 

  • Strassner J.E. (1968) Effect of pH on interfacial films and stability of crude oil-water emulsions [J]. Journal of Petroleum Technology. 20, 303–312.

    Article  Google Scholar 

  • Strausz O.P., Mojelsky T.W., Faraji F., Lown E.M., and Peng P.A. (1999) Additional structural details on athabasca asphaltene and their ramifications [J]. Energy & Fuels. 13, 207–227.

    Article  Google Scholar 

  • Sullivan A.P. and Kilpatrick P.K. (2002) The effects of inorganic solid particles on water and crude oil emulsion stability [J]. Industrial & Engineering Chemistry Research. 41, 3389–3404.

    Article  Google Scholar 

  • Sztukowski D.M. and Yarranton H.W. (2005) Rheology of asphaltene-toluene/water interfaces [J]. Langmuir. 21, 11651–11658.

    Article  Google Scholar 

  • Terzian R. and Serpone N. (1995) Heterogeneous photocatalyzed oxidation of creosote components: Mineralization of xylenols by illuminated TiO2 in oxygenated aqueous media [J]. Journal of Photochemistry and Photobiology, A: Chemistry. 89, 163–175.

    Article  Google Scholar 

  • Totsche K.U. (2003) Preferential flow and aging of NAPL in the unsaturated soil zone of a hazardous waste site: Implicatins for contaminant transport [J]. Journal of Plant Nutrition and Soil Science-zeitschrift fur Pflanzenernahrung und Bodenkunde. 166, 102–110.

    Article  Google Scholar 

  • Tursi F., Samaia M., Salmona M., and Belvedere G. (1983) Styrene oxidation to styrene oxide in human erythrocytes is catalyzed by oxyhemoglobin [J]. Experientia FIELD Full Journal Title: Experientia. 39, 593–594.

    Google Scholar 

  • Viamajala S., Peyton B.M., Richards L.A., and Petersen J.N. (2007) Solubilization, solution equilibria, and biodegradation of PAHs under thermophilic conditions [J]. Chemosphere. 66, 1094–1106.

    Article  Google Scholar 

  • Whitman W.G. (1923) Preliminary experimental confirmation of the two-film theory of gas absorption [J]. Chemical and Metallurgical Engineering. 29, 146–148.

    Google Scholar 

  • Zhao Weishu and Ioannidis M.A. (2007) Effect of NAPL film stability on the dissolution of residual wetting NAPL in porous media: A pore-scale modeling study [J]. Advances in Water Resources. 30, 171–181.

    Article  Google Scholar 

  • Zheng Jianzhong, Shao Jiahui, and Powers S.E. (2001) Asphaltenes from coal tar and creosote: Their role in reversing the wettability of aquifer systems [J]. Journal of Colloid and Interface Science. 244, 365–371.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihua Liu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Liu, L., Haderlein, S. A review on the aging phenomena of organic components and their mass transfer through the NAPL interfacial phase. Chin. J. Geochem. 32, 252–260 (2013). https://doi.org/10.1007/s11631-013-0630-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11631-013-0630-6

Key words

Navigation