Skip to main content
Log in

Cryopreservation of an endangered Hladnikia pastinacifolia Rchb. by shoot tip encapsulation-dehydration and encapsulation-vitrification

  • Biotechnology
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The objective of the present study was the cryopreservation of monotypic endemic Hladnikia pastinacifolia Rchb. shoot tips from an in vitro culture, via encapsulation-dehydration (ED) or encapsulation-vitrification (EV). For all tested genotypes, the highest rates of shoot regrowth and multiplication were obtained after overnight preculture in 0.4 M sucrose, encapsulation in Murashige and Skoog (MS) medium with 0.4 M sucrose and 1 M glycerol, followed by polymerization in 3% (w/v) Na-alginate in MS with 0.4 M sucrose. Optimal osmoprotection was achieved for ED with 0.4 M sucrose plus 1 M glycerol and for EV with 0.4 M sucrose plus 2 M glycerol. The best dehydration time for ED was 150 min in a desiccation chamber with silica gel, and the best vitrification time for EV was 85 min in plant vitrification solution 2 (PVS2). For ED, dehydration for 150 min resulted in explant water content of 22%. When the encapsulation method was combined with ED, 53% regrowth was achieved, and when it was combined with EV, 64% regrowth was achieved. Both methods could become applicable for the long-term cryopreservation of H. pastinacifolia germplasm, although EV was faster and resulted in better final regrowth success. Genetic stability analysis of cryopreserved plant samples was carried out for two genotypes, using random amplified polymorphic DNA (RAPD) markers to compare the two different cryopreservation protocols. Significant genetic differences between the genotypes were detected and a low level of genomic variation was observed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Ambrožič-Dolinšek J, Ciringer T, Kaligarič M (2016) Micropropagation of the narrow endemic Hladnikia pastinacifolia (Apiaceae). Acta Bot Croat 75:244–252

    Article  Google Scholar 

  • Benelli C, de Carlo A, Engelmann F (2013) Recent advances in the cryopreservation of shoot-derived germplasm of economically important fruit trees of Actinidia, Diospyros, Malus, Olea, Prunus, Pyrus and Vitis. Biotechnol Adv 31:175–185

    Article  CAS  Google Scholar 

  • Benson EE (2008) Cryopreservation of phytodiversity: a critical appraisal of theory & practice. Crit Rev Plant Sci 27:141–219

    Article  CAS  Google Scholar 

  • Castillo NRF, Bassil NV, Wada S, Reed BM (2010) Genetic stability of cryopreserved shoot tips of Rubus germplasm. In Vitro Cell Dev Biol Plant 46:246–256

    Article  Google Scholar 

  • Charoensub R, Hirai D, Sakai A (2004) Cryopreservation of in vitro-grown shoot tips of cassava by encapsulation-vitrification method. CryoLetters 25:51–58

    PubMed  Google Scholar 

  • Coelho N, Gonçalves S, González-Benito ME, Romano A (2012) Establishment of an in vitro propagation protocol for Thymus lotocephalus, a rare aromatic species of the Algarve (Portugal). Plant Growth Regul 66:69–74

    Article  CAS  Google Scholar 

  • Čušin B (2004) Hladnikia pastinacifolia Rchb. – rebrinčevolistna hladnikija, hladnikovka. In: Čušin B, Babij V, Bačič T, Dakskobler I, Frajman B, Jogan N, Kaligarič M, Praprotnik N, Seliškar A, Skoberne P, Surina B, Škornik S, Vreš B. (eds) Natura 2000 v Sloveniji, Rastline. Založba ZRC, ZRC SAZU, Ljubljana (ISBN 961-6500-66-X), pp 107–113 (Slovenian language)

  • Engelmann F, Gonzalez Arnao MT, Wu Y, Escobar R (2008) Development of encapsulation in dehydration. In: Reed BM (ed) Plant cryopreservation: a practical guide. Springer, New York, pp 59–75

    Chapter  Google Scholar 

  • Halmagyi A, Deliu C (2007) Cryopreservation of carnation (Dianthus caryophyllus L.) shoot tips by encapsulation-vitrification. Sci Hortic 113:300–306

    Article  CAS  Google Scholar 

  • Harding K (2004) Genetic integrity of cryopreserved plant cells: a review. CryoLetters 25:3–22

    PubMed  Google Scholar 

  • Hirai D, Sakai A (1999) Cryopreservation of in vitro grown axillary shoot-tip meristems of mint (Mentha spicata) by encapsulation-vitrification. Plant Cell Rep 19:150–155

    Article  CAS  Google Scholar 

  • Hirai D, Sakai A (2000) Cryopreservation techniques. Cryopreservation of in vitro grown meristems of potato (Solanum tuberosum L.) by encapsulation–vitrification. JIRCAS Int Agric Ser 8:205–211

    Google Scholar 

  • Jeon SM, Arun M, Lee SY, Kim CK (2015) Application of encapsulation-vitrification in combination with air dehydration enhances cryotolerance of Chrysanthemum morifolium shoots tips. Sci Hortic 194:91–99

    Article  CAS  Google Scholar 

  • Li BQ, Feng CH, Wang MR, Hu LY, Volk G, Wang QC (2015) Recovery patterns histological observations and genetic integrity in Malus shoot tips cryopreserved using droplet-vitrification and encapsulation-dehydration procedures. J Biotechnol 214:182–191

    Article  CAS  Google Scholar 

  • Lipavska H, Vreugdenhil D (1996) Uptake of mannitol from the media by in vitro grown plants. Plant Cell Tissue Organ Cult 45:103–107

    Article  CAS  Google Scholar 

  • Martin C, Gonzalez-Benito ME (2005) Survival and genetic stability of Dendranthema grandiflora Tzvelev shoot apices after cryopreservation by vitrification and encapsulation-dehydration. Cryobiology 51:281–289

    Article  CAS  Google Scholar 

  • Martin C, Cervera MT, Gonzalez-Benito ME (2011) Genetic stability analysis of chrysanthemum (Chrysanthemum x morifolium Ramat) after different stages of an encapsulation-dehydration cryopreservation protocol. J Plant Physiol 168:158–166

    Article  CAS  Google Scholar 

  • Martín C, Kremer C, González I, González-Benito ME (2015) Influence of the cryopreservation technique, recovery medium and genotype on genetic stability of mint cryopreserved shoot tips. Plant Cell Tissue Organ Cult 122:185–195

    Article  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Nuc K, Marszałek M, Pukacki PM (2016) Cryopreservation changes the DNA methylation of embryonic axes of Quercus robur and Fagus sylvatica seeds during in vitro culture. Trees 30:1831–1841

    Article  CAS  Google Scholar 

  • Panis B, Lambardi M (2005) Status of cryopreservation technologies in plants (crops and forest trees). The role of biotechnology, Villa Gualino, Turin, Italy – 5-7 March pp.43–54

  • Peakall R, Smouse P (2012) GenAlEx 6.501: genetic analysis in excel. Population genetic software for teaching and research—an update. Bioinformatics 28:2537–2539

    Article  CAS  Google Scholar 

  • Pence VC (2013) In vitro methods and the challenge of exceptional species for target 8 of the global strategy for plant conservation. Ann Mo Bot Gard 99:214–220

    Article  Google Scholar 

  • Pence VC (2014) Tissue cryopreservation for plant conservation: potential and challenges. Int J Plant Sci 175:40–45

    Article  Google Scholar 

  • Rohlf FJ (1992) NTSYS-PC: numerical taxonomy and multivariate analysis system. Exeter Software, New York

    Google Scholar 

  • Šajna N, Kavar T, Šuštar-Vozlič J, Kaligarič M (2012) Population genetics of the narrow endemic Hladnikia pastinacifolia Rchb. (Apiaceae) indicates survival in situ during the Pleistocene. Acta Biol Cracov Ser Bot 54:1–13

    Google Scholar 

  • Šajna N, Šuštar-Vozlič J, Kaligarič M (2014) New insights into the anatomy of an endemic Hladnikia pastinacifolia Rchb. Acta Bot Croat 73:375–384

    Article  Google Scholar 

  • Sakai A, Engelmann F (2007) Vitrification encapsulation-vitrification and droplet-vitrification: a review. CryoLetters 28:151–172

    CAS  PubMed  Google Scholar 

  • Sakai A, Kobayashi S, Oiyama I (1990) Cryopreservation of nucellar cells of navel orange (Citrus sinensis Osb. var. brasiliensis Tanaka) by vitrification. Plant Cell Rep 9:30–33

    Article  CAS  Google Scholar 

  • Sharma S, Shahzad A, Teixeira da Silva JA (2013) Synseed technology—a complete synthesis. Biotechnol Adv 31:186–207

    Article  CAS  Google Scholar 

  • Shatnawi M, Engelmann F, Frattarelli A, Damiano C, Withers LA (1999) Cryopreservation of apices from in vitro plantlets of almond (Prunus dulcis). CryoLetters 20:13–20

    Google Scholar 

  • Šuštar-Vozlič J, Javornik B (1999) Genetic relationships in cultivars of hops, Humulus lupulus L., determined by RAPD analysis. Plant Breed 118:175–181

    Article  Google Scholar 

  • Suzuki M, Tandon P, Ishikawa M, Toyomasu T (2008) Development of a new vitrification solution, VSL, and its application to the cryopreservation of gentian axillary buds. Plant Biotech Rep 2:123–131

    Article  Google Scholar 

  • Wang B, Zhang Z, Yin Z, Feng C, Wang Q (2012) Novel and potential application of cryopreservation to plant genetic transformation. Biotechnol Adv 30:604–612

    Article  CAS  Google Scholar 

  • Wang B, Li JW, Zhang ZB, Wang RR, Ma YL, Blystad DR, Keller ERJ, Wang QC (2014) Three vitrification-based cryopreservation procedures cause different cryo-injuries to potato shoot tips while all maintain genetic integrity in regenerants. J Biotechnol 84:47–55

    Article  Google Scholar 

Download references

Funding

The Slovene Ministry of Higher Education, Science, and Technology supported this research within the program “Research to Ensure Food Safety and Health” with the Grant No. P1-0164, led by D. Škorjanc.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jana Ambrožič-Dolinšek.

Additional information

Editor: Barbara Reed

Electronic supplementary material

ESM 1

(DOCX 21 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ciringer, T., Martín, C., Šajna, N. et al. Cryopreservation of an endangered Hladnikia pastinacifolia Rchb. by shoot tip encapsulation-dehydration and encapsulation-vitrification. In Vitro Cell.Dev.Biol.-Plant 54, 565–575 (2018). https://doi.org/10.1007/s11627-018-9917-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-018-9917-y

Keywords

Navigation