Skip to main content
Log in

Improved propagation of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

Here, we evaluated the efficiency of shoot multiplication of Vanilla planifolia Jacks. ex Andrews using solid medium, partial immersion, and a temporary immersion system (TIS) to improve micropropagation in this species. Clusters of shoots were cultivated in vitro using Murashige and Skoog (MS) medium supplemented with 9.55 μM benzyladenine (BA) and 100 mL L−1 coconut water. For the TIS, a RITA® system was used and three immersion frequencies were evaluated (every 4, 8, and 12 h) with an immersion time of 2 min. After 30-d culture, the TIS produced the maximum multiplication rate (14.27 shoots per explant) when using an immersion frequency of 2 min every 4 h, followed by the partial immersion system (8.64 shoots per explant), and solid medium (5.80 shoots per explant). Next, the effect of the volume of culture medium per explant was also evaluated for TIS. The most suitable volume of culture medium for shoot formation was 25 mL per explant, which increased the rate of multiplication to 17.54 shoots per explant. Root initiation was 90% successful in TIS using half-strength MS medium supplemented with 0.44 μM naphthaleneacetic acid (NAA) and an immersion frequency of 2 min every 4 h. With this system, the shoot multiplication rate increased threefold compared to that obtained with solid medium. In addition, this system produced good results for the transplantation and acclimation (90% of survival) of in vitro-derived plants. These results offer new options for large-scale micropropagation of vanilla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.

Similar content being viewed by others

References

  • Arencibia AD, Vergara C, Quiroz K, Carrasco B, García-Gonzales R (2013) Establishment of photomixotrophic cultures for raspberry micropropagation in Temporary Immersion Bioreactors (TIBs). Sci Hortic 160:49–53

    Article  CAS  Google Scholar 

  • Bello-Bello JJ, Canto-Flick A, Balam-Uc E, Gómez-Uc E, Robert ML, Iglesias-Andreu LG, Santana-Buzzy N (2010) Improvement of in vitro proliferation and elongation of habanero pepper shoots (Capsicum chinense Jacq.) by temporary immersion. HortSci 45:1093–1098

    Google Scholar 

  • Bory S, Lubinsky P, Risterucci AM, Noyer JL, Grisoni M, Duval MF, Besse P (2008) Patterns of introduction and diversification of Vanilla planifolia (Orchidaceae) in Reunion Island (Indian Ocean). Am J Bot 95:805–815

    Article  PubMed  CAS  Google Scholar 

  • Debnath S (2011) Bioreactors and molecular analysis in berry crop micropropagation. A review. Can J Plant Sci 91:147–157

    Article  Google Scholar 

  • Etienne H, Berthouly M (2002) Temporary immersion systems in plant micropropagation. Plant Cell Tiss Organ Cult 69:215–231

    Article  Google Scholar 

  • Farahani F, Majd A (2012) Comparison of liquid culture methods and effect of temporary immersion bioreactor on growth and multiplication of banana (Musa cv. Dwarf Cavendish). Afr J Biotechnol 11:8302–8308

    CAS  Google Scholar 

  • Geetha S, Sudheer A (2000) In vitro propagation of Vanilla planifolia, a tropical orchid. Curr Sci 79:885–889

    Google Scholar 

  • George PS, Ravishankar GA (1997) In vitro multiplication of Vanilla planifolia using axillary bud explants. Plant Cell Rep 16:490–494

    CAS  Google Scholar 

  • Giridhar P, Obul B, Ravishankar GA (2001) Silver nitrate influences in vitro shoot multiplication and root formation in Vanilla planifolia Andr. Curr Sci 81:1166–1170

    CAS  Google Scholar 

  • Giridhar P, Ravishankar GA (2004) Efficient micropropagation of Vanilla planifolia Andr. under influence of thidiazuron, zeatin and coconut milk. Indian J Biotechnol 3:113–118

    CAS  Google Scholar 

  • Gonzalez-Arnao MT, Lazaro-Vallejo CE, Engelmann F, Gamez-Pastrana R, Martínez-Ocampo YM, Pastelin-Solano MC, Díaz-Ramos C (2009) Multiplication and cryopreservation of vanilla (Vanilla planifolia Andrews). In Vitro Cell Dev Biol–Plant 45:574–582

    Article  Google Scholar 

  • Greule M, Tumino L, Kronewald T, Hener U, Schleucher J, Mosandl A, Keppler F (2010) Improved rapid authentication of vanillin using δ13C and δ2 H values. Eur Food Res Technol 231:933–941

    Article  CAS  Google Scholar 

  • Hempfling T, Preil W (2005) Application of a temporary immersion system in mass propagation on Phalaenopsis. In: Hvoslef-Eide AK, Preil W (eds) Liquid culture systems for in vitro plant propagation. Springer, Dordrecht Netherlands, pp 231–242

    Chapter  Google Scholar 

  • Hernández J (2011) Paquete tecnológico Vainilla (Vanilla planifolia Jackson). Establecimiento y mantenimiento. Programa Estratégico para el desarrollo Rural Sustentable de la Región Sur-Sureste: Trópico Húmedo. INIFAP. Tlapacoyan (in Spanish)

  • Janarthanam B, Sheshadri S (2008) Plantlet regeneration from leaf derived callus of Vanilla planifolia Andrews. In Vitro Cell Dev Biol–Plant 44:84–89

    Article  CAS  Google Scholar 

  • Jin MY, Piao XC, Xiu JR, Park SY, Lian ML (2013) Micropropagation using a bioreactor system and subsequent acclimatization of grape rootstock ′5BB′. Sci Hortic 164:35–40

    Article  Google Scholar 

  • Kalimuthu K, Senthilkumar R, Murugalatha N (2006) Regeneration and mass multiplication of Vanilla planifolia Andrews. A tropical orchid. Curr Sci 9:1401–1403

    Google Scholar 

  • Lee-Espinosa HE, Murguía-González J, García-Rosas B, Córdova-Contreras AL, Laguna-Cerda A, Mijangos-Cortés JO, Barahona-Pérez LF, Iglesias-Andreu LG, Santana-Buzzy N (2008) In vitro clonal propagation of vanilla (Vanilla planifolia ‘Andrews’). HortSci 43:454–458

    Google Scholar 

  • Levin R, Tanny G (2004) Bioreactors as a low cost option for tissue culture. In: Low cost options for tissue culture technology in developing countries. Conference proceedings. International Atomic Energy Agency, Vienna Austria, pp 47–54

  • Lorenzo JC, González BL, Escalona M, Teisson C, Espinosa P, Borroto C (1998) Sugarcane shoot formation in an improved temporary immersion system. Plant Cell Tiss Organ Cult 54:197–200

    Article  CAS  Google Scholar 

  • Mallón R, Covelo P, Vieitez A (2012) Improving secondary embryogenesis in Quercus robur: application of temporary immersion of mass propagation. Trees 26:731–741

    Article  Google Scholar 

  • McAlister B, Finnie J, Watt M, Blakeway F (2005) Use of the temporary immersion bioreactor system (RITA) for production of commercial Eucalyptus clones in Mondi Forests (SA). Plant Cell Tiss Organ Cult 81:347–358

    Article  Google Scholar 

  • Minno D, Nirmal K (2009) Micropropagation and in vitro conservation of vanilla (Vanilla planifolia Andrews). In: Mohan J, Praveen K (eds) Protocols for in vitro cultures and secondary metabolite analysis of aromatic and medicinal plants, Methods in Molecular Biology. Humana, New York, pp 129–138

    Google Scholar 

  • Mordocco AM, Brumbley JA, Lakshmanan P (2009) Development of a temporary immersion system (RITA®) for mass production of sugarcane (Saccharum spp. interspecific hybrids). In Vitro Cell Dev Biol–Plant 45:450–457

    Article  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Pinaria AG, Liew EC, Burgess LW (2010) Fusarium species associated with vanilla stem rot in Indonesia. Australas Plant Path 39:176–183

    Article  Google Scholar 

  • SEMARNAT (Secretaría de Medio Ambiente y Recursos Naturales) (2002) Norma Oficial Mexicana (NOM-059-ECOL-2001) de Protección especial de especies nativas de México de Flora y Fauna silvestres. Diario Oficial de la Federación, marzo 6, pp 2–56. (in Spanish)

  • Roels S, Escalona M, Cejas I, Noceda C, Rodriguez R, Canal MJ, Sandoval J, Debergh P (2005) Optimization of plantain (Musa AAB) micropropagation by temporary immersion system. Plant Cell Tiss Organ Cult 82:57–66

    Article  CAS  Google Scholar 

  • Salazar-Rojas VM, Herrera-Cabrera BE, Delgado-Alvarado A, Soto-Hernández M, Castillo-González F, Cobos-Peralta M (2012) Chemotypical variation in Vanilla planifolia Jack. (Orchidaceae) from the Puebla-Veracruz Totonacapan region. Genet Resour Crop Evol 59:875–887

    Article  CAS  Google Scholar 

  • Sankar-Thomas YD, Lieberei R (2011) Camptothecin accumulation in various organ cultures of Camptotheca acuminata Decne grown in different culture systems. Plant Cell Tiss Organ Cult 106:445–454

    Article  CAS  Google Scholar 

  • Soto Arenas MA (1999) Filogeografía y recursos genéticos de las vainillas de México. Instituto Chinoin AC. SNIB-CONABIO proyecto No. J101. México DF (in Spanish)

  • Soto Arenas MA, Cribb P (2010) A new infrageneric classification and synopsis of the genus Vanilla Plum. ex Mill. (Orchidaceae: Vanillinae). Lakesteriana 9:355–398

    Google Scholar 

  • Sreedhar RV (2009) Novel approaches for molecular analyses, micropropagation and curing of vanilla (Vanilla planifolia). PhD thesis. University of Mysore, New Delhi, India

  • Tan BC, Chin CF, Alderson P (2011) Optimisation of plantlet regeneration from leaf and nodal derived callus of Vanilla planifolia Andrews. Plant Cell Tiss Organ Cult 105:457–463

    Article  CAS  Google Scholar 

  • Torres-González MJ, Aguirre-Medina JF, Iracheta-Donjuan L (2011) Germinación de semillas y obtención de plántulas de Vanilla planifolia Andrews en condiciones in vitro. Agroproductividad 4:3–8 (in Spanish)

    Google Scholar 

  • Yan H, Liang C, Li Y (2010) Improved growth and quality of Siraitia grosvenorii plantlets using a temporary immersion system. Plant Cell Tiss Organ Cult 103:131–135

    Article  Google Scholar 

  • Zerihun A, Ayelign M, Alemayehu T, Wondyfraw T (2009) Efficient in vitro multiplication protocol for Vanilla planifolia using nodal explants in Ethiopia. Afr J Biotechnol 8:6817–6821

    Google Scholar 

  • Zhu LH, Li XY, Welander M (2005) Optimization of growing conditions for the apple rootstock M26 grown in RITA containers using temporary immersion principle. Plant Cell Tiss Organ Cult 81:313–318

    Article  Google Scholar 

Download references

Acknowledgments

Authors would like to thank the “Programa de Mejoramiento del Profesorado (PROMEP)” for the financial support provided for the project “Biotechnological Basis for the Genetic Improvement of Vanilla planifolia” within the “Conservation, Management and Plant Breeding” network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. G. Iglesias-Andreu.

Additional information

Editor: J. Forster

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramos-Castellá, A., Iglesias-Andreu, L.G., Bello-Bello, J. et al. Improved propagation of vanilla (Vanilla planifolia Jacks. ex Andrews) using a temporary immersion system. In Vitro Cell.Dev.Biol.-Plant 50, 576–581 (2014). https://doi.org/10.1007/s11627-014-9602-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-014-9602-8

Keywords

Navigation