Skip to main content
Log in

In vitro propagation of North American ginseng (Panax quinquefolius L.)

  • Plant Tissue Culture
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

North American ginseng (NAG) (Panax quinquefolius L.) is a medicinally important plant with multiple uses in the natural health product industry. As seed propagation is time-consuming because of the slow growth cycle of the plant, in vitro propagation using a bioreactor system was evaluated as an effective approach to accelerate plant production. An efficient method was developed to multiply nodal explants of NAG using liquid-culture medium and a simple temporary immersion culture vessel. The effects of plant growth regulators, phenolics, and chemical additives (activated charcoal, melatonin, polyvinylpolypyrrolidone, and ascorbic acid) were evaluated on in vitro-grown NAG plants. The highest number (12) of shoots per single node was induced in half-strength Schenk and Hildebrandt basal medium containing 2.5 mg/l kinetin, in which 81% of the cultured nodes responded. In a culture medium with 0.5 mg/l α-naphthalene acetic acid (NAA), roots were induced in 78% of the explants compared to 50% with a medium containing indole-3-acetic acid. All of the resulting plants appeared phenotypically normal, and 93% of the rooted plants were established in the greenhouse. Phenolic production increased significantly (P < 0.05) over a 4-wk culture period with a negative impact on growth and proliferation. Activated charcoal (AC; 50 mg/l) significantly reduced total phenolic content and was the most effective treatment for increasing shoot proliferation. Shoot production increased as the phenolic content of the cultures decreased. The most effective treatment for NAG development from cultured nodal explants in the bioreactor was 2.5 mg/l kinetin, 0.5 mg/l NAA, and 50 mg/l AC in liquid culture medium. This protocol may be useful in providing NAG tissues or plants for a range of ginseng-based natural health products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.

Similar content being viewed by others

References

  • Birmeta G.; Welander M. Efficient micropropagation of Ensete ventricosum applying meristem wounding: a three-step protocol. Plant Cell Rep 23: 277–283; 2004.

    Article  PubMed  CAS  Google Scholar 

  • Castillo-Sanchez J. X.; Garcia-Falcon M. S.; Garrido J.; Martinez-Carballo E.; Martins-Dias L. R.; Mejuto X. C. Phenolic compounds and colour stability of Vinhao wines: Influence of wine making protocol and fining agents. Food Chem 106: 18–26; 2008.

    Article  CAS  Google Scholar 

  • Chen G.; Huo Y.; Tan D. X.; Liang Z.; Zhang W.; Zhang Y. Melatonin in Chinese medicinal herbs. Life Sci 73: 19–28; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Choi K. T.; Lee M. G.; Kwon W. S.; Lee J. H. Strategy for high quality ginseng breeding. Korean J Breeding 26: 83–91; 1994.

    Google Scholar 

  • Choi S. M.; Son S. H.; Yun S. R.; Kwon O. W.; Seon J. H.; Paek K. Y. Pilot-scale culture of adventitious roots of ginseng in a bioreactor system. Plant Cell, Tissue Organ Cult 62: 187–193; 2000.

    Article  CAS  Google Scholar 

  • Choi Y. E.; Yang D. C.; Yoon E. S.; Choi K. T. Plant regeneration via adventitious bud formation from cotyledon explants of Panax ginseng C.A.Meyer. Plant Cell Rep 17: 731–736; 1998.

    Article  CAS  Google Scholar 

  • Christensen L. P. Ginsenosides: Chemistry, Biosynthesis, Analysis and Potential Health Effects. Adv Food Nutr Res 55: 1–99; 2008.

    Article  Google Scholar 

  • Dubbels R.; Reiter R. J.; Klenke E.; Goebel A.; Schnakenberg E.; Ehlers C.; Schiwara H. W.; Schloot W. Melatonin in edible plants identified by radioimmunoassay and by high performance liquid chromatography-mass spectrometry. J Pineal Res 18: 28–31; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Ebert A.; Taylor H. F. Assessment of the changes of 2,4-dichlorophenoxyacetic acid concentrations in plant tissue culture media in the presence of activated charcoal. Plant Cell, Tissue Organ Cult 20: 165–172; 1990.

    CAS  Google Scholar 

  • Feeney M.; Punja Z. K. Production of somatic embryos of American ginseng in suspension culture and regeneration of plantlets. Acta Hort 625: 225–231; 2003.

    Google Scholar 

  • Fournier A. R.; Charest P.; Gosselin A.; Khanizadeh S.; Dorais M. Growing American ginseng organically in a North American broadleaf forest. Acta Hort 765: 77–86; 2008.

    Google Scholar 

  • Fridborg G.; Pedersen M.; Landstrom L. E.; Eriksson T. The effect of activated charcoal on tissue cultures: Adsorption of metabolites inhibiting morphogenesis. Physiol Plantarum 43: 104–106; 1978.

    Article  CAS  Google Scholar 

  • Garcia G.; Fernandez-Galiano E.; Mauri P. V. Liquid medium culture of Quercus suber L. somatic embryos comparation between liquid and solid culture and among different growing media. Acta Hort 447: 149–151; 1997.

    Google Scholar 

  • Habibi N.; Suthar R. K.; Purohit S. D. Role of PGRs and inhibitors in induction and control of somatic embryogenesis in Themeda quadrivalvis. Indian J Exp Biol 47: 198–203; 2009.

    PubMed  CAS  Google Scholar 

  • Hahn E. J.; Kim Y. S.; Yu K. W.; Jeong C. S.; Paek K. Y. Adventitious root cultures of Panax ginseng C.A. Meyer and ginsenoside production through large-scale bioreactor system. J. Plant Biotechnol 5: 1–6; 2003.

    Google Scholar 

  • Harlan J. R.; de Wet J. M. J. Toward a rational classification of cultivated plants. Taxonomy 20: 509–517; 1971.

    Article  Google Scholar 

  • He C. N.; Gao W. W.; Yang J. X.; Bi W.; Zhang X. S.; Zhao Y. J. Identification of autotoxic compounds from fibrous roots of Panax quinquefolium L. Plant Soil 318: 63–72; 2009.

    Article  CAS  Google Scholar 

  • Hovius M. H. Y.; Proctor J. T. A.; Saxena P. K. Effects of date and growth regulators on the culture of immature zygotic embryos of North American ginseng. J Ginseng Res 31: 14–22; 2007.

    Article  CAS  Google Scholar 

  • Hu W. W.; Yao H.; Zhong J. J. Improvement of Panax notoginseng cell culture for production of ginseng saponin and polysaccharide by high density cultivation in pneumatically agitated bioreactors. Biotechnol Progr 17: 838–846; 2001.

    Article  CAS  Google Scholar 

  • Jhang J. J.; Staba E. J.; Kim J. Y. American and Korean ginseng tissue cultures: growth, chemical analysis and plantlet production. In Vitro 9: 253–259; 1974.

    Article  CAS  Google Scholar 

  • Kefeli V. I.; Kadyrov C. S. Natural growth inhibitors, their chemical and physiological properties. Annu Rev Plant Physiol 22: 185–196; 1971.

    Article  CAS  Google Scholar 

  • Kevers C.; Gal N. L.; Monteiro M.; Dommes J.; Gasper T. Somatic embryogenesis of Panax ginseng in liquid cultures: a role for polyamines and their metabolic pathways. Plant Growth Regul 31: 209–214; 2000.

    Article  CAS  Google Scholar 

  • Kevers C.; Jacques P.; Thonart P.; Gaspar T. In vitro root cultures of Panax ginseng and P. quinquefolium. Plant Growth Regul 27: 173–178; 1999.

    Article  CAS  Google Scholar 

  • Kishira H.; Takada M.; Shoyama Y. Micropropagation of Panax ginseng C.A. Meyer by somatic embryos. Acta Hort 319: 197–202; 1992.

    Google Scholar 

  • Kolar J.; Johnson C. H.; Machackova I. Exogenously applied melatonin affects flowering of the short-day plant Chenopodium rubrum. Physiol Plantarum 118: 605–612; 2003.

    Article  CAS  Google Scholar 

  • Kolar J.; Machackova I.; Eder J.; Prinsen E.; van Dongen W.; van Onckelen H.; Illnerova H. Melatonin: Occurrence and daily rhythm in Chenopodium rubrum. Phytochemistry 44: 1407–1413; 1997.

    Article  CAS  Google Scholar 

  • Linington I. M. In vitro propagation of Dipterocarpus alatus and Dipterocarpus intricatus. Plant Cell, Tissue Organ Cult 27: 81–88; 1991.

    Article  CAS  Google Scholar 

  • Luo S. W.; Huang W. H.; Cao G. Y.; Yu R. C. Tissue culture of Panax schinseng. Plant Physiol Comm. 2: 26–38; 1964.

    Google Scholar 

  • Manjula S.; Thomas A.; Daniel B.; Nair G. M. In vitro plant regeneration of Aristolochia indica through axillary shoot multiplication and organogenesis. Plant Cell, Tissue Organ Cult 51: 145–148; 1997.

    Article  Google Scholar 

  • Mathur A.; Shukla Y. N.; Pal M.; Ahuja P. S.; Uniyal G. C. Saponin production in callus and cell suspension cultures of Panax quinquefolium. Phytochemistry 35: 1221–1225; 1994.

    Article  CAS  Google Scholar 

  • Matsingou T. C.; Petrakis N.; Kapsokefalou M.; Salifoglou A. Antioxidant activity of organic extracts from aqueous infusions of sage. J Agric Food Chem 51: 6696–6701; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Molyneux P. The use of stable free radical diphenyl picrylhydrazyl (DPPH) for estimating antioxidant activity. J Sci Technol 26: 211–219; 2004.

    CAS  Google Scholar 

  • Monteiro M.; Kevers C.; Dommes J.; Gaspar T. A specific role for spermidine in the initiation phase of somatic embryogenesis in Panax ginseng CA Meyer. Plant Cell, Tissue Organ Cult 68: 225–232; 2002.

    Article  CAS  Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bioassays with tobacco cultures. Physiol Plant 15: 473–497; 1962.

    Article  CAS  Google Scholar 

  • Murch S. J.; Liu C.; Romero R. M.; Saxena P. K. In vitro culture and temporary immersion bioreactor production of Crescentia cujete. Plant Cell, Tissue Organ Cult 78: 63–68; 2004.

    Article  CAS  Google Scholar 

  • Murch S. J.; Saxena P. K. A melatonin-rich germplasm line of St John’s wort (Hypericum perforatum L.). J Pineal Res 41: 284–287; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Murch S. J.; Alan A. R.; Cao J.; Saxena P. K. Melatonin and serotonin in flowers and fruits of Datura metel L. J Pineal Res 47: 277–283; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Nilprapruck P.; Yodmingkhwan P. Effect of exogenous methyl jasmonate on the internal browning of pineapple fruit (Ananas comosus L.) cv. Pattavia. KKU Res J 14: 489–498; 2009.

    Google Scholar 

  • Pan M. J.; van Staden J. The use of charcoal in in vitro culture-a review. Plant Growth Regul 26: 155–163; 1998.

    Article  CAS  Google Scholar 

  • Posmyk M. M.; Bałabusta M.; Wieczorek M.; Sliwinska E.; Janas K. M. Melatonin applied to cucumber (Cucumis sativus L.) seeds improves germination during chilling stress. J Pineal Res 46: 214–223; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Proctor J. T. A.; Bailey W. G. Ginseng: industry, botany and culture. Hort Rev 9: 187–236; 1987.

    Google Scholar 

  • Proctor J. T. A.; Slimmon T.; Saxena P. K. Modulation of root growth and organogenesis in thidiazuron-treated ginseng (Panax quinquefolium L.). Plant Growth Regul 20: 201–208; 1996.

    Article  CAS  Google Scholar 

  • Schenk R. U.; Hildebrandt A. C. Medium and techniques for induction and growth of monocotyledonous and dicotyledonous plant cell cultures. Can J Bot 50: 199–204; 1972.

    Article  CAS  Google Scholar 

  • Shi W.; Wang Y.; Li J.; Zhang H.; Ding L. Investigation of ginsenosides in different parts and ages of Panax ginseng. Food Chem 102: 664–668; 2007.

    Article  CAS  Google Scholar 

  • Shoyama Y.; Matsushita H.; Zhu X. X.; Kishira H. Somatic embryogenesis in ginseng (Panax species). In: Bajaj Y. P. S. (ed) Biotechnology in Agriculture and Forestry, Somatic Embryogenesis and Synthetic Seed II, vol. 31. Springer, New York, pp 344–356; 1995.

    Google Scholar 

  • Shoyama Y.; Zhu X. X.; Nakai R.; Shiraishi S.; Kohda H. Micropropagation of Panax notoginseng by somatic embryogenesis and RAPD analysis of regenerated plantlets. Plant Cell Rep 16: 450–453; 1997.

    CAS  Google Scholar 

  • Singleton V. L.; Orthofer R.; Lamuela-Raventos R. M. Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu Reagent. Methods Enzymol 299: 152–178; 1999.

    Article  CAS  Google Scholar 

  • Symons G. M.; Reid J. B. Interactions between light and plant hormones during de-etiolation. J Plant Growth Regul 22: 3–14; 2003.

    Article  CAS  Google Scholar 

  • Tan D. X.; Manchester L. C.; Helton P.; Reiter R. J. Phytoremediative capacity of plants enriched with melatonin. Plant Signal Behav 2: 514–516; 2007.

    Article  PubMed  Google Scholar 

  • Thomas T. D. The role of activated charcoal in plant tissue culture. Biotechnol Adv 26: 618–631; 2008.

    Article  PubMed  CAS  Google Scholar 

  • Tirajoh A.; Kyung T. S.; Punja Z. K. Somatic embryogenesis and plantlet regeneration in American ginseng (Panax quinquefolium L.). In Vitro Cell Dev Biol Plant 34: 203–211; 1998.

    Google Scholar 

  • Tisserat B. Propagation of Date Palm (Phoenix dactylifera L.) in vitro. J Exp Bot 30: 1275–1283; 1979.

    Article  CAS  Google Scholar 

  • Trautmann I. A.; Visser J. H. The possible role of phenolic substances in the establishment of suspension cultures of guayule (Parthenium argentatum Gray). Bioresource Technol 35: 133–139; 1991.

    Article  CAS  Google Scholar 

  • Velioglu Y. S.; Mazza G.; Gao L.; Oomah B. D. Antioxidant activity and total phenolics in selected fruits, vegetables, and grain products. J. Agric. Food Chem. 46: 4113–4117; 1998.

    Article  CAS  Google Scholar 

  • Wang A. S. Callus induction and plant regeneration of American ginseng. HortScience 25: 571–572; 1990.

    CAS  Google Scholar 

  • Wang C. Z.; Aung H. H.; Zhang B.; Sun S.; Li X. L.; He H.; Xie J. T.; He T. C.; Du W.; Yuan C. S. Chemopreventive effects of heat-processed Panax quinquefolius root on human breast cancer cells. Anticancer Res 28: 2545–2551; 2008.

    PubMed  CAS  Google Scholar 

  • Wang J.; Gao W. Y.; Zhang J.; Huang T.; Cao Y.; Zhao Y. X. Dynamic change of metabolites and nutrients in suspension cells of Panax quinquefolium L. in bioreactor. Acta Physiol Plant 32: 463–467; 2010.

    Article  Google Scholar 

  • Wu J.; Zhong J. J. Production of ginseng and its bioactive components in plant cell culture: current technological and applied aspects. J Biotechnol 68: 89–99; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Young P. S.; Murthy H. N.; Yoeup P. K. Mass multiplication of protocorm-like bodies using bioreactor system and subsequent plant regeneration in Phalaenopsis. Plant Cell, Tissue Organ Cult 63: 67–72; 2000.

    Article  CAS  Google Scholar 

  • Yuan C. S.; Attele A. S.; Wu J. A.; Lowell T. K.; Gu Z.; Lin Y. Panax quinquefolium L. inhibits thrombin-induced endothelin release in vitro. Am J Chin Med 27: 331–338; 1999.

    Article  PubMed  CAS  Google Scholar 

  • Zhong J. J.; Bai Y.; Wang S. J. Effects of plant growth regulators on cell growth and ginsenoside saponin production by suspension cultures of Panax quinquefolium. J Biotechnol 45: 227–234; 1996.

    Article  CAS  Google Scholar 

  • Zhou S.; Brown D. C. W. High efficiency plant production of North American ginseng via somatic embryogenesis from cotyledon explants. Plant Cell Rep. 25: 166–173; 2006.

    Article  PubMed  CAS  Google Scholar 

  • Zhou S.; Brown D. C. W. et al. A highly efficient protocol for micropropagation of North American ginseng. In: Xu Z. (ed) Biotechnology and Sustainable Agriculture 2006 and Beyond. Proceedings of the 11th IAPTC&B Congress. Springer Netherlands, Beijing, China, pp 425–428; 2007.

    Chapter  Google Scholar 

Download references

Acknowledgment

This research was funded by the Ontario Research Fund, Research Excellence program through the Ontario Ginseng Innovation and Research Consortium (OGIRC).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esther E. Uchendu.

Additional information

Editor: John Finer

Rights and permissions

Reprints and permissions

About this article

Cite this article

Uchendu, E.E., Paliyath, G., Brown, D.C.W. et al. In vitro propagation of North American ginseng (Panax quinquefolius L.). In Vitro Cell.Dev.Biol.-Plant 47, 710–718 (2011). https://doi.org/10.1007/s11627-011-9379-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-011-9379-y

Keywords

Navigation