Skip to main content

Advertisement

Log in

Biotechnology for saving rare and threatened flora in a biodiversity hotspot

  • Invited Review
  • Published:
In Vitro Cellular & Developmental Biology - Plant Aims and scope Submit manuscript

Abstract

The Southwest Australian Floristic Region (SWAFR) is a plant biodiversity hotspot with a geographically isolated and predominantly endemic flora. Known threatening processes (i.e. excessive clearing of native vegetation, soil salinity, soil erosion and chronic weed infestation) combined with uncertain but potentially deleterious environmental (climate) changes pose great challenges for conservation and restoration efforts. With a paucity of nature reserves, in situ protection of species can be problematic. For many species, ex situ conservation becomes the only viable strategy for saving species from extinction via seed banking or living collections established through vegetative propagation, or tissue (in vitro) culture methods. Development of specific in vitro protocols is necessary to successfully initiate culture lines, with considerable development of nutrient media, plant growth regulator regimes and incubation conditions required to optimise shoot regeneration and multiplication, especially with woody species of the SWAFR. In addition, integration of root induction and acclimatization stages has allowed significant improvements in speed and success of plant production of both endangered and difficult-to-propagate woody species. We contend that there is also considerable potential for expansion of alternative in vitro technologies such as somatic embryogenesis for difficult taxa to complement existing ex situ conservation and restoration strategies in biodiversity hotspots such as SWAFR.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Atkins K. J. Declared rare and priority flora list for Western Australia. Department of Environment and Conservation, Kensington; 2008.

    Google Scholar 

  • Barratt S.; Shearer B.; Crane C.; Cochrane A. The risk of extinction resulting from disease caused by Phytophthora cinnamomi to threatened flora endemic to the Stirling Range National Park, Western Australia. In: Rokich D.; Wardell-Johnson G.; Yates C.; Stevens J.; Dixon K.; McLellan R.; Moss G. (eds) Proceedings of the international Mediterranean ecosystems conference, 2–5 September, Perth, Australia. Kings Park and Botanic Garden, Perth, pp 15–16; 2007.

    Google Scholar 

  • Batkova P.; Pospisilova J.; Synkova H. Production of reactive oxygen species and development of antioxidative systems during in vitro growth and ex vitro transfer. Biol. Plant. 52: 413–422; 2008.

    CAS  Google Scholar 

  • Bennett I. J.; McComb J. A. Propagation of Jarrah (Eucalyptus marginata) by organ and tissue culture. Aust. For. Res. 12: 121–127; 1982.

    Google Scholar 

  • Benson E. E. In vitro recalcitrance: an introduction. Special symposium: in vitro plant recalcitrance. In Vitro Cell. Dev. Biol., Plant 36: 141–148; 2000a.

    Google Scholar 

  • Benson E. E. Do free radicals have a role in plant tissue culture recalcitrance? Special symposium: in vitro plant recalcitrance. In Vitro Cell. Dev. Biol., Plant 36: 163–170; 2000b.

    CAS  Google Scholar 

  • Benson E. E. Cryopreservation of phytodiversity: a critical appraisal of theory & practice. Crit. Rev. Plant Sci. 27: 141–219; 2008.

    CAS  Google Scholar 

  • Beveridge R. Eucalyptus phylacis, a study of phenolic oxidation of a recalcitrant native Australian species. Honours thesis, University of Western Australia, Perth, Western Australia; 2000

  • Bonga J. M.; Klimaszewska K. K.; von Aderkas P. Recalcitrance in clonal propagation, in particular of conifers. Plant Cell Tissue Organ Cult. 100: 241–254; 2010.

    Google Scholar 

  • Bornman B. T.; Haynes R. W.; Martin J. R. Adaptive management of forest ecosystems: did some rubber hit the road? Bioscience 57: 186–191; 2007.

    Google Scholar 

  • Bove J. M.; Garnier M. Phloem- and xylem-restricted plant pathogenic bacteria. Plant Sci. 64: 423–438; 2003.

    Google Scholar 

  • Bunn E. Development of in vitro methods for ex situ conservation of rare Australian plants. Ph.D. thesis, University of Western Australia, Perth, Australia; 2003.

  • Bunn E. Development of in vitro methods for ex situ conservation of Eucalyptus impensa, an endangered mallee from southwest Western Australia. Plant Cell Tissue Organ Cult. 83: 97–102; 2005.

    CAS  Google Scholar 

  • Bunn E. Investigations of alternative in vitro rooting methods with rare and recalcitrant plants. VI International symposium on in vitro culture and horticultural breeding, Brisbane Australia 24–28 August. Presented paper (pdf now available on ISHS web—http://www.actahort.org/books/829/); 2008.

  • Bunn E.; Dixon I. R. Re-introduction on the endangered Bancroft’s Symonanthus in Western Australia. In: Soorae P. S. (ed) Global re-introduction perspectives: re-introduction case-studies from around the globe. IUCN/SSC Re-introduction Specialist Group, Abu Dhabi, pp 225–228; 2008.

    Google Scholar 

  • Bunn E.; Dixon K. W. In vitro propagation of the rare and endangered Grevillea scapigera (Proteaceae). HortScience 27: 261–262; 1992.

    Google Scholar 

  • Bunn E.; Dixon K. W.; Langley M. A. In vitro propagation of Leucopogon obtectus Benth. (Epacridaceae). Plant Cell Tissue Organ Cult 19:77–84; 1989.

    CAS  Google Scholar 

  • Bunn E.; Senaratna T.; Sivasithamparam K.; Dixon K. W. In vitro propagation of Eucalyptus phylacis L Johnson and K Hill, a critically endangered relict from Western Australia. In Vitro Cell. Dev. Biol., Plant 41: 812–815; 2005.

    CAS  Google Scholar 

  • Bunn E.; Stone B.; Willyams D.; Yan G. In vitro conservation of Synaphea stenoloba (Proteaceae). Acta Hort; 869, ISHS 2010.

  • Bunn E.; Tan B. Microbial contaminants in plant tissue culture propagation. In: Dixon S. K.; KW B. R. (eds) Microorganisms in conservation. Kluwer Academic, Dordrecht; 2002.

    Google Scholar 

  • Burgman M. A.; Keith D.; Hopper S. D.; Widyatmoko D.; Drill C. Threat syndromes and conservation of the Australian flora. Biol. Conserv. 134: 73–82; 2007.

    Google Scholar 

  • Cahill D. M.; Rookes J. E.; Wilson B. A.; Gibson L.; McDougall K. L. Phytophthora cinnamomi and Australia’s biodiversity: impacts, predictions and progress towards control. Aust. J. Bot. 56: 279–310; 2008.

    Google Scholar 

  • Carlson W. C.; Hartle J. E. Manufactured seed of woody plants. In: Jain S.; Gupta P.; Newton R. (eds) Somatic embryogenesis in woody plants, vol. 1. Kluwer Academic, Dordrecht, pp 253–263; 1995.

    Google Scholar 

  • Carman J. G. Embryogenic cells in plant tissue cultures: occurrence and behaviour. In Vitro Cell. Dev. Biol. 26: 746–753; 1990.

    Google Scholar 

  • Ceoldo S.; Toffali K.; Mantovani S.; Baldan G.; Levi M.; Guzzo F. Metabolomics of Daucus carota cultured cell lines under stressing conditions reveals interactions between phenolic compounds. Plant Sci. 176: 553–565; 2009.

    CAS  Google Scholar 

  • Coates D. J.; Atkins K. A. Priority setting and the conservation of Western Australia’s diverse and highly endemic flora. Biol. Conserv. 97: 251–263; 2001.

    Google Scholar 

  • Collins J. In: Mitchell S. (ed) Threatened flora of the Western Central Wheatbelt. Department of Environment and Conservation, Kensington; 2009.

    Google Scholar 

  • Department of Conservation and Land Management. Bailey’s Symonanthus (Symonanthus bancroftii) interim recovery plan 2006–2011. Interim recovery plan No. 225. Department of Conservation and Land Management, Como; 2006.

    Google Scholar 

  • Dixon B. Translocation of the resinous Eremophila, from test tube to a degraded bushland site in the Wheatbelt of Western Australia. In: Soorae P. S. (ed.) Global re-introduction perspectives: re-introduction case-studies from around the globe. IUCN/SSC Re-introduction Specialist Group, Abu Dhabi; 2011 (in press)

  • Dixon B.; Krauss S. Translocation of the Corrigin grevillea in South Western Australia. In: Soorae P. S. (ed) Global re-introduction perspectives: re-introduction case-studies from around the globe. IUCN/SSC Re-introduction Specialist Group, Abu Dhabi, pp 229–234; 2008.

    Google Scholar 

  • Dunwell J. M. Recent advances in the application of in vitro systems to plant improvement. Proc. VI International Symposium on in vitro culture and horticultural breeding, 24–28 August, 2008. Brisbane, Australia, 23–31; 2009.

  • Fay M. F.; Bunn E.; Ramsay M. M. In vitro propagation. In: Bowes B. G. (ed) A colour atlas of plant propagation and conservation. Manson, London; 1999.

    Google Scholar 

  • Feher A.; Pasternak T. P.; Dudits D. Transition of somatic plant cells to an embryogenic state. Plant Cell Tissue Organ Cult. 74: 201–228; 2003.

    CAS  Google Scholar 

  • Feher A.; Pasternak T. P.; Otvos K.; Miskolczi P.; Dudits D. Induction of embryogenic competence in somatic plant cells: a review. Biologia 57: 5–12; 2002.

    CAS  Google Scholar 

  • Gaspar T.; Kevers C.; Bisbis B.; Franck T.; Crevecoeur M.; Greppin H.; Dommes J. Loss of plant organogenic totipotency in the course of in vitro neoplastic progression. Special symposium: in vitro plant recalcitrance. In Vitro Cell. Dev. Biol., Plant 36: 171–181; 2000.

    CAS  Google Scholar 

  • George E. F. Plant propagation by tissue culture, part I: the technology. Exegetics, Edington, pp 1–574; 1993.

    Google Scholar 

  • George E. F. Plant propagation by tissue culture, part II: in practice. Exegetics, Edington, pp 575–1361; 1996.

    Google Scholar 

  • Gray D. J.; Purohit A.; Triglano R. N. Somatic embryogenesis and development of synthetic seed technology. Crit. Rev. Plant Sci. 10: 33–61; 1991.

    Google Scholar 

  • Harding K. Approaches to assess the genetic stability of plants recovered from in vitro culture. In: Normah M. N. (ed) Proc intl workshop on in vitro conservation of plant genetic resources (ISBN 983-9647). Plant Biotechnology Laboratory, Kuala Lumpur, pp 137–170; 1996.

    Google Scholar 

  • Harding K. Stability assessments of conserved plant germplasm. In: Benson E. (ed) Plant conservation biotechnology. Taylor and Francis, London, pp 97–107; 1999.

    Google Scholar 

  • Hendrix S. D.; Kyhl J. F. Population size and reproduction in Phlox pilosa. Conserv. Biol. 14: 304–313; 2000.

    Google Scholar 

  • Hobbs R. J.; Saunders D. A. Effects of landscape fragmentation in agricultural areas. In: Moritz C.; Kikawa J. (eds) Conservation biology in Australia and Oceania. Surrey Beatty & Sons, Chipping, pp 77–95; 1994.

    Google Scholar 

  • Hopper S. D. Landscape age, evolution and conservation of biodiversity in Mediterranean regions. In: Rokich D.; Wardell-Johnson G.; Yates C.; Stevens J.; Dixon K.; McLellan R.; Moss G. (eds) Proceedings of the international Mediterranean ecosystems conference, 2–5 September, Perth, Australia. Kings Park and Botanic Garden, Perth, pp 123–124; 2007.

    Google Scholar 

  • Hopper S. D.; Gioia P. The Southwest Australian Floristic Region: evolution and conservation of a global hotspot of biodiversity. Ann. Rev. Evol. Syst. 35: 623–650; 2004.

    Google Scholar 

  • Hvoslef-Eide A. K.; Priel W. (eds). Liquid culture systems for in vitro plant propagation. Springer, Dordrecht; 2005.

    Google Scholar 

  • Jones M. P. A.; YI Z.; Murch S. J. Thidiazuron-induced regeneration of Echinacea purpurea L.: micropropagation in solid and liquid culture systems. Plant Cell Rep. 26: 13–19; 2007.

    PubMed  CAS  Google Scholar 

  • Johnston J. W.; Benson E. E.; Harding K. Cryopreservation induces temporal DNA methylation epigenetic changes and differential transcriptional activity in Ribes germplasm. Plant Physiol. Biochem. 47: 123–131; 2009.

    PubMed  CAS  Google Scholar 

  • Kaczmarczyk A.; Turner S. R.; Bunn E.; Mancera R. L.; Dixon K. W. Cryopreservation of threatened native Australian species—what have we learned and where to from here? In Vitro Cell. Dev. Biol., Plant. (special edition); 2011 (this issue). doi:10.1007/s11627-010-9318-3.

  • Kadlecek P.; Ticha I.; Haisel D.; Capkova V.; Schafer C. Importance of in vitro pretreatment for ex vitro acclimatization and growth. Plant Sci. 161: 695–701; 2001.

    CAS  Google Scholar 

  • Kendurkar S. V.; Nadgauda R. S.; Phadke C. H.; Jana M. M.; Shirke S. V. Somatic embryogenesis in some woody angiosperms. In: Jain S. M.; Gupta P. K.; Newton R. J. (eds) Somatic embryogenesis in woody plants, vol. 1. Kluwer Academic, Dordrecht, pp 49–79; 1995.

    Google Scholar 

  • Kim Y.; Wyslouzil B.; Weathers P. Secondary metabolism of hairy root cultures in bioreactors. In Vitro Cell. Dev. Biol., Plant 38: 1–10; 2002.

    CAS  Google Scholar 

  • Koch J. M. Restoring a Jarrah forest understorey vegetation after bauxite mining in Western Australia. Restor. Ecol. 15: 26–39; 2007a.

    Google Scholar 

  • Koch J. M. Alcoa’s mining and restoration in south Western Australia. Restor. Ecol. 15: 11–16; 2007b.

    Google Scholar 

  • Kozai T. Photoautotrophic micropropagation. In Vitro Cell. Dev. Biol., Plant 27: 47–51; 1991.

    Google Scholar 

  • Krauss S. K.; Dixon B.; Dixon K. W. Rapid genetic decline in a translocated population of the endangered plant Grevillea scapigera. Conserv. Biol. 16: 986–994; 2001.

    Google Scholar 

  • Kriebel H. B. Introduction. In: Jain S. M.; Gupta P. K.; Newton R. J. (eds) Somatic embryogenesis in woody plants, Vol 1. Kluwer Academic, Dordrecht, pp 1–8; 1995.

    Google Scholar 

  • Le Roux J. J.; Van Staden J. Micropropagation and tissue culture of Eucalyptus—a review. Tree Physiol. 9: 435–477; 1991.

    PubMed  Google Scholar 

  • Leifert C.; Cassells A. C. Microbial hazards in plant tissue and cell cultures. In Vitro Cell. Dev. Biol., Plant 37: 133–138; 2001.

    Google Scholar 

  • Lynch P. T. Tissue culture techniques in in vitro plant conservation. In: Benson E. E. (ed) Plant conservation biotechnology. Taylor & Francis, London; 1999.

    Google Scholar 

  • Maunder M.; Culham A.; Alden B.; Zizka G.; Orliac C.; Lobin W.; Bordeu A.; Ramirez J. M.; Glissman-Gough S. Conservation of the Toromiro tree: case study in the management of a plant extinct in the wild. Conserv. Biol. 14: 1341–1350; 2000.

    Google Scholar 

  • McAlister B.; Finnie J.; Watt M. P.; Blakeway F. Use of the temporary immersion bioreactor system (RITA) for production of commercial Eucalyptus clones in Mondi Forests (SA). Plant Cell Tissue Organ Cult. 81: 347–358; 2005.

    Google Scholar 

  • McComb J.; Bennett I. J.; Tonkin C. In vitro propagation of Eucalyptus species. In: Taji A.; Williams R. R. (eds) Tissue culture of Australian plants. University of New England, Armidale, pp 112–156; 1996.

    Google Scholar 

  • McCown B. H. Recalcitrance of woody and herbaceous perennial plants: dealing with genetic predeterminism. Special symposium: in vitro plant recalcitrance. In Vitro Cell. Dev. Biol., Plant 36: 149–154; 2000.

    Google Scholar 

  • Meney K. A.; Dixon K. W. Phenology, reproductive biology and seed development in four rush and sedge species from Western Australia. Aust. J. Bot. 36: 711–726; 1988.

    Google Scholar 

  • Meney K. A.; Dixon K. W. In vitro propagation of Western Australian Rushes (Restionaceae and related families) by embryo culture. Part 1. In vitro embryo growth. Plant Cell Tissue Organ Cult. 41: 115–124; 1995.

    Google Scholar 

  • Merritt D. J.; Dixon K. W. Seed storage characteristics and dormancy of Australian indigenous plant species. In: Smith R. D.; Dickie J. B.; Linington S. H.; Pritchard H. W.; Probert R. J. (eds) Seed conservation: turning science into practice. Royal Botanic Gardens Kew, Cromwell, London, pp 809–823; 2003.

    Google Scholar 

  • Merritt D. J.; Turner S. R.; Clarke S.; Dixon K. W. Seed dormancy and germination stimulation syndromes for Australian temperate species. Aust. J. Bot. 55: 336–344; 2007.

    Google Scholar 

  • Minocha S. C.; Minocha R. Historical aspects of somatic embryogenesis in woody plants. In: Jain S. M.; Gupta P. K.; Newton R. J. (eds) Somatic embryogenesis in woody plants, vol. 1. Kluwer Academic, Dordrecht, pp 9–22; 1995.

    Google Scholar 

  • Mittermeier R. A.; Robles P.; Gil M. H.; Pilgrim J.; Brooks T.; Mittermeier C. G.; Lamoreux J.; Da Fonseca G. A. B.; Seligmann P. (eds). Hotspots revisited. Conservation International. University of Chicago Press, Chicago; 2005.

    Google Scholar 

  • Murashige T.; Skoog F. A revised medium for rapid growth and bio-assays with tobacco callus culture. Physiol. Plant. 15: 473–497; 1962.

    CAS  Google Scholar 

  • Naik D.; Vartak V.; Bhargava S. Provenance and subculture dependent variation during micropropagation of Gmelina arborea. Plant Cell Tissue Organ Cult. 73: 189–195; 2003.

    CAS  Google Scholar 

  • Namasivayam P. Acquisition of embryogenic competence during somatic embryogenesis. Plant Cell Tissue Organ Cult. 90: 1–8; 2007.

    CAS  Google Scholar 

  • Newell C.; Growns D.; McComb J. The influence of medium aeration on in vitro rooting of Australian plant microcuttings. Plant Cell Tissue Organ Cult. 75: 131–142; 2003.

    CAS  Google Scholar 

  • Newell C.; Growns D.; McComb J. A. A novel in vitro rooting method employing an aerobic medium. Aust. J. Bot. 53: 81–89; 2005.

    Google Scholar 

  • Nhut D. T.; Teixeira Da Silva J.; Aswath C. R. The importance of the explant on regeneration in this cell layer technology. In Vitro Cell. Dev. Biol., Plant 39: 266–276; 2003.

    Google Scholar 

  • Niedz R. P.; Bausher M. G. Control of in vitro contamination of explants from greenhouse and field-grown trees. In Vitro Cell. Dev. Biol., Plant 38: 468–471; 2002.

    Google Scholar 

  • Nikabadi S.; Bunn E.; Turner S. R.; Stevens J.; Dixon K. W. Micropropagation of Commersonia adenothalia and Commersonia sp. ‘Mount Groper’ (Malvaceae, ex Sterculiaceae), two endangered species from the South Western Australian Floristic Region. Aust. J. Bot. 58: 565–574; 2010.

    Google Scholar 

  • Nishiwaki M.; Fujino K.; Koda Y.; Masuda K.; Kikuta Y. Somatic embryogenesis induced by the simple application of abscisic acid to carrot (Daucus carota L.) seedlings in culture. Planta 211: 756–759; 2000.

    PubMed  CAS  Google Scholar 

  • Nowak J.; Shulaev V. Priming for transplant stress resistance in in vitro propagation. In Vitro Cell. Dev. Biol., Plant 39: 107–124; 2003.

    Google Scholar 

  • Panaia M.; Bunn E.; McComb J. A. In vitro culture of Australian sedges for restoration and horticulture. VI International symposium on in vitro culture and horticultural breeding, 24–28 August. Brisbane, Australia; 2008.

  • Panaia M.; Bunn E.; Turner S. R.; McComb J. A. Incubation temperature critical to successful stimulation of in vitro zygotic embryo growth in four Australian native Cyperaceae species. Plant Cell Tiss Organ Cult. 97: 197–202; 2009.

    Google Scholar 

  • Panaia M.; Bunn E.; Turner S. R.; McComb J. A. Primary and repetitive secondary somatic embryogenesis of Lepidosperma drummondii (Cyperaceae) and Baloskion tetraphyllum (Restionaceae) for land restoration and horticulture. In Vitro Cell. Dev. Biol., Plant; 2011. doi:10.1007/s11627-010-9335-2.

  • Panaia M.; Senaratna T.; Bunn E.; Dixon K.; Sivasithamparam K. Micropropagation of the critically endangered Western Australian species Symonanthus bancroftii (F. Muell) L. Haegi (Solanaceae). Plant Cell Tissue and Organ Cult. 63(1): 23–29; 2000.

    CAS  Google Scholar 

  • Panaia M.; Senaratna T.; Dixon K. W.; Sivasithamparam K. High-frequency somatic embryogenesis of koala fern (Baloskion tetraphyllum, Restionaceae). In Vitro Cell. Dev. Biol., Plant 40: 303–310; 2004a.

    CAS  Google Scholar 

  • Panaia M.; Senaratna T.; Dixon K. W.; Sivasithamparam K. The role of cytokinins and thidiazuron in the stimulation of somatic embryogenesis in key members of the Restionaceae. Aust. J. Bot. 52: 257–265; 2004b.

    CAS  Google Scholar 

  • Paques M.; Bercetche J.; Palada M. Prospects and limits of somatic embryogenesis of Picea abies. In: Jain S. M.; Gupta P. K.; Newton R. J. (eds) Somatic embryogenesis in woody plants, vol. 1. Kluwer Academic, Dordrecht, pp 399–414; 1995.

    Google Scholar 

  • Pence V. C. In vitro collecting (IVC). 1. The effect of collecting method and antimicrobial agents on contamination in temperate and tropical collections. In Vitro Cell. Dev. Biol., Plant 41: 324–332; 2005.

    Google Scholar 

  • Pospisilova J.; Ticha I.; Kadlecek P.; Haisel D.; Plzakova S. Acclimatization of micropropagated plants to ex vitro conditions. Biol. Plant. 42: 481–497; 1999.

    Google Scholar 

  • Preece K. E.; Sutter E. G. Acclimatization of micropropagated plants to the greenhouse and field. In: DeBergh P. C.; Zimmerman R. H. (eds) Micropropagation, technology and application. Kluwer Academic, Dordrecht, pp 71–93; 1991.

    Google Scholar 

  • Raemakers K.; Jacobsen E.; Visser R. In: Jain S. M.; Gupta P. K.; Newton R. J. (eds) Somatic embryogenesis in woody plants, vol. 4. Kluwer Academic, Dordrecht, pp 29–59; 1999.

    Google Scholar 

  • Rani V.; Raina S. N. Genetic fidelity of organized meristem-derived micropropagated plants: a critical reappraisal. In Vitro Cell. Dev. Biol., Plant 36: 319–330; 2000.

    CAS  Google Scholar 

  • Rossetto M.; Dixon K. W.; Meney K. A.; Bunn E. In vitro culture of Chinese puzzle (Caustis dioica Cyperaceae)—a commercial sedge species from Western Australia. Plant Cell Tissue Organ Cult. 30: 65–67; 1992.

    CAS  Google Scholar 

  • Rossetto M.; Weaver P. K.; Dixon K. W. Use of RAPD analysis in devising conservation strategies for the rare and endangered Grevillea scapigera (Proteaceae). Mol. Ecol. 4: 321–329; 1995.

    PubMed  CAS  Google Scholar 

  • Sagare A. P.; Lee Y. L.; Lin T. C.; Chen C. C.; Tsay H. S. Cytokinin-induced somatic embryogenesis and plant regeneration in Corydalis yanhusuo (Fumariaceae)—a medicinal plant. Plant Sci. 160: 139–147; 2000.

    PubMed  CAS  Google Scholar 

  • Sarasan V.; Cripps R.; Ramsay M. M.; Atherton C.; McMichen M.; Prendergast G.; Rowntree J. K. Conservation in vitro of threatened plants—progress in the past decade. In Vitro Cell. Dev. Biol., Plant 42: 2006–2014; 2006.

    Google Scholar 

  • Sieler I. The horticultural development of south-west Australian Restionaceae and Cyperaceae. Ph.D. thesis, Faculty of Agriculture, The University of Western Australia, Perth, Australia; 1996.

  • State of the Environment Report. Environmental protection authority, government of Western Australia (www.soe.wa.gov.au); 2007.

  • Taji A.; Williams R. R. Chapter 1. Overview of plant tissue culture. In: Taji A.; Williams R. (eds) Tissue culture of Australian plants—past, present and future. University of New England, Armidale, pp 1–15; 1996.

    Google Scholar 

  • Taji A. M.; Sheather W.; Williams R. R. Micropropagation of Boronia. Proc. Inter. Plant Prop. Soc. 44: 110–113; 1994.

    Google Scholar 

  • Thomas P. Reemergence of covert bacteria Bacillus pumilus and Brevibacillus sp. in microbe-freed grape and watermelon stocks attributable to occasional autoclaving-defying residual spores from previous cycles. Plant Cell Tissue and Organ Cult. 87: 155–165; 2006.

    Google Scholar 

  • Ulrich K.; Stauber T.; Ewald D. Paenibacillus—a predominant endophytic bacterium colonizing tissue cultures of woody plants. Plant Cell Tissue Organ Cult. 93: 347–351; 2008.

    Google Scholar 

  • Vallendor L.; Hasbun R.; Meijon M.; Rodriguez J. L.; Santamaria E.; Viejo M.; Berdasco M.; Fieto I.; Fraga M. F.; Canal M. J.; Rodriguez R. Involvement of DNA methylation in tree development and micropropagation. Plant Cell Tissue Organ Cult. 91: 75–86; 2007.

    Google Scholar 

  • Van Huylenbroeck J. M.; Piqueras A.; Debergh P. C. Photosynthesis and carbon metabolism in leaves formed prior and during ex vitro acclimatization of micropropagated plants. Plant Sci. 134: 21–30; 1998.

    Google Scholar 

  • Verpoorte R.; Choi Y. H.; Mustafa N. R.; Kim H. K. Metabolomics: back to basics. Phytochem. Rev. 7: 525–537; 2008.

    CAS  Google Scholar 

  • von Perger B. A.; Weaver P.; Dixon K. W. Genetic diversity and restoration of a recalcitrant clonal sedge (Tetraria capillaris Cyperaceae). Biodivers. Conserv. 3: 279–294; 1994.

    Google Scholar 

  • Wan Y.; Lemaux P. G. Generation of large numbers of independently transformed fertile barley plants. Plant Physiol. 104: 37–48; 1994.

    PubMed  CAS  Google Scholar 

  • Williams E. G.; Maheshwaran G. Somatic embryogenesis: factors influencing coordinate behaviour of cells as an embryogenic group. Ann. Bot. 57: 443–462; 1986.

    Google Scholar 

  • Williamson B.; Cooke D. E. L.; Duncan J. M.; Leifert C. Fungal infections of micropropagated plants at weaning: a problem exemplified by downy mildews in Rubus and Rosa. Plant Cell Tissue Organ Cult. 52: 89–96; 1998.

    Google Scholar 

  • Willyams D. Tissue culture of geophytic rush and sedge species for relegation of bauxite mine sites in the northern Jarrah forest of Western Australia. In: Bennett I. J.; Bunn E.; Clarke H.; McComb J. A. (eds) Contributing to a sustainable future. Proceedings of the Australian Branch of the IAPTC&B, September. Perth, Western Australia, Australia; 2005.

  • Willyams D.; Moolhuijzen P.; Volker P. W.; Raymond C. A.; Chandler S. F. Micropropagation of juvenile Eucalyptus regnans. In: IUFRO/AFOCEL symposium: mass production technology for genetically fast growing forest tree species. Bordeaux, France; 1992.

  • Yates C. J.; Ladd P. G. Relative importance of reproduction biology and establishment ecology for persistence of a rare shrub in a fragmented landscape. Conserv. Biol. 19: 239–249; 2005.

    Google Scholar 

  • Ye Q.; Bunn E.; Krauss S. L.; Dixon K. W. Reproductive success in a reintroduced population of a critically endangered Western Australian shrub, Symonanthus bancroftii (Solanaceae). Aust. J Bot. 55: 428–432; 2007.

    Google Scholar 

  • Zobayed S. M. A.; Afreen F.; Xiao Y.; Kozai T. Recent advances in research on micropropagation using large culture vessels with forced ventilation. In Vitro Cell. Dev. Biol., Plant 40: 450–458; 2004.

    Google Scholar 

  • Zobayed S. M. A.; Kubota C.; Kozai T. Development of a forced ventilation micropropagation system for large-scale photoautotrophic culture and its utilization in sweet potato. In Vitro Cell. Dev. Biol., Plant 34: 350–355; 1999.

    Google Scholar 

Download references

Acknowledgements

We acknowledge the research efforts of our scientific colleagues at Kings Park and Botanic Garden, University of Western Australia, Murdoch University, Curtin University, Department of Environment and Conservation, the efforts of various state and local government agencies, as well as many volunteers without whose combined efforts conservation of our unique flora would be impossible. We also acknowledge our private sector sponsors/partners, ALCOA (Australia) and BHP-Worsley in various collaborative research projects.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Bunn.

Additional information

Editor: P. Lakshmanan

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bunn, E., Turner, S.R. & Dixon, K.W. Biotechnology for saving rare and threatened flora in a biodiversity hotspot. In Vitro Cell.Dev.Biol.-Plant 47, 188–200 (2011). https://doi.org/10.1007/s11627-011-9340-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11627-011-9340-0

Keywords

Navigation