Skip to main content
Log in

Generation of eye field/optic vesicle-like structures from human embryonic stem cells under two-dimensional and chemically defined conditions

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Despite the enormous progress in studying retinal cell differentiation from human embryonic stem cells (hESCs), none of the reported protocols have produced a cost-effective eye field cells with the capability to further differentiate into retinal derivatives. In this study, by drawing chemicals on our four-step differentiation strategy, we demonstrated the ability of hESCs in assembling such qualifications to follow human retinogenesis in a serum- and feeder-free adherent condition. Two-dimensional (2D) populations of eye field cells arose within early forebrain progeny upon hESCs differentiation. Gene expression analysis showed that the treatment of hESCs with a combination of selected small molecules (SMs) gave rise to the higher expressions of eye field-specific genes, PAX6, RX, and SIX3. Thereafter, a subset of cells gained the transient features of advancing retinal differentiation, including optic vesicle (OV)-like structures, which expressed MITF and CHX10 in a manner imitated in vivo human retinal development. The competency of derived cells in differentiation to retinal derivatives was further investigated. The gene analysis of the cells showed more propensity for generating retinal pigment epithelial (RPE) than neural retina (NR). The generation of OV-like structures in 2D cultures can shed light on molecular events governing retinal specification. It can also facilitate the study of human retinal development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Adler R, Canto-Soler MV (2007) Molecular mechanisms of optic vesicle development: complexities, ambiguities and controversies. Dev Biol 305(1):1–13

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Baharvand H, Ashtiani SK, Taee A, Massumi M, Valojerdi MR, Yazdi PE, Moradi SZ, Farrokhi A (2006) Generation of new human embryonic stem cell lines with diploid and triploid karyotypes. Develop Growth Differ 48(2):117–128

    Article  Google Scholar 

  • Bailey TJ, El-Hodiri H, Zhang L, Shah R, Mathers PH, Jamrich M (2004) Regulation of vertebrate eye development by Rx genes. Int J Dev Biol 48(8–9):761–770

    Article  CAS  PubMed  Google Scholar 

  • Buchholz DE, Pennington BO, Croze RH, Hinman CR, Coffey PJ, Clegg DO (2013) Rapid and efficient directed differentiation of human pluripotent stem cells into retinal pigmented epithelium. Stem Cells Transl Med 2(5):384–393

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Efe JA, Ding S (2011) The evolving biology of small molecules: controlling cell fate and identity. Philos Trans R Soc Lond B Biol Sci 366(1575):2208–2221

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E, Okuda S, Sekiguchi K, Adachi T, Sasai Y (2011) Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472(7341):51–56

    Article  CAS  PubMed  Google Scholar 

  • Finlay BL (2008) The developing and evolving retina: using time to organize form. Brain Res 1192:5–16

    Article  CAS  PubMed  Google Scholar 

  • Fuhrmann S (2010) Eye morphogenesis and patterning of the optic vesicle. Curr Top Dev Biol 93:61–84

    Article  PubMed Central  PubMed  Google Scholar 

  • Fujimura N, Taketo MM, Mori M, Korinek V, Kozmik Z (2009) Spatial and temporal regulation of Wnt/beta-catenin signaling is essential for development of the retinal pigment epithelium. Dev Biol 334(1):31–45

    Article  CAS  PubMed  Google Scholar 

  • Furukawa T, Kozak CA, Cepko CL (1997) rax, a novel paired-type homeobox gene, shows expression in the anterior neural fold and developing retina. Proc Natl Acad Sci U S A 94(7):3088–3093

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Idelson M, Alper R, Obolensky A, Ben-Shushan E, Hemo I, Yachimovich-Cohen N, Khaner H, Smith Y, Wiser O, Gropp M, Cohen MA, Even-Ram S, Berman-Zaken Y, Matzrafi L, Rechavi G, Banin E, Reubinoff B (2009) Directed differentiation of human embryonic stem cells into functional retinal pigment epithelium cells. Cell Stem Cell 5(4):396–408

    Article  CAS  PubMed  Google Scholar 

  • Ikeda H, Osakada F, Watanabe K, Mizuseki K, Haraguchi T, Miyoshi H, Kamiya D, Honda Y, Sasai N, Yoshimura N, Takahashi M, Sasai Y (2005) Generation of Rx+/Pax6+ neural retinal precursors from embryonic stem cells. Proc Natl Acad Sci U S A 102(32):11331–11336

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kawasaki H, Suemori H, Mizuseki K, Watanabe K, Urano F, Ichinose H, Haruta M, Takahashi M, Yoshikawa K, Nishikawa S, Nakatsuji N, Sasai Y (2002) Generation of dopaminergic neurons and pigmented epithelia from primate ES cells by stromal cell-derived inducing activity. Proc Natl Acad Sci U S A 99(3):1580–1585

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Lange C, Mix E, Frahm J, Glass A, Muller J, Schmitt O, Schmole AC, Klemm K, Ortinau S, Hubner R, Frech MJ, Wree A, Rolfs A (2011) Small molecule GSK-3 inhibitors increase neurogenesis of human neural progenitor cells. Neurosci Lett 488(1):36–40

    Article  CAS  PubMed  Google Scholar 

  • Li W, Ding S (2010) Small molecules that modulate embryonic stem cell fate and somatic cell reprogramming. Trends Pharmacol Sci 31(1):36–45

    Article  PubMed  Google Scholar 

  • Li H, Tierney C, Wen L, Wu JY, Rao Y (1997) A single morphogenetic field gives rise to two retina primordia under the influence of the prechordal plate. Development 124(3):603–615

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lyssiotis CA, Lairson LL, Boitano AE, Wurdak H, Zhu S, Schultz PG (2011) Chemical control of stem cell fate and developmental potential. Angew Chem Int Ed Engl 50(1):200–242

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Morales JR, Rodrigo I, Bovolenta P (2004) Eye development: a view from the retina pigmented epithelium. Bioessays 26(7):766–777

    Article  CAS  PubMed  Google Scholar 

  • Mathers PH, Jamrich M (2000) Regulation of eye formation by the Rx and pax6 homeobox genes. Cell Mol Life Sci 57(2):186–194

    Article  CAS  PubMed  Google Scholar 

  • Meyer JS, Howden SE, Wallace KA, Verhoeven AD, Wright LS, Capowski EE, Pinilla I, Martin JM, Tian S, Stewart R, Pattnaik B, Thomson JA, Gamm DM (2011) Optic vesicle-like structures derived from human pluripotent stem cells facilitate a customized approach to retinal disease treatment. Stem Cells 29(8):1206–1218

  • Meyer JS, Shearer RL, Capowski EE, Wright LS, Wallace KA, McMillan EL, Zhang SC, Gamm DM (2009) Modeling early retinal development with human embryonic and induced pluripotent stem cells. Proc Natl Acad Sci U S A 106(39):16698–16703

  • Nakano T, Ando S, Takata N, Kawada M, Muguruma K, Sekiguchi K, Saito K, Yonemura S, Eiraku M, Sasai Y (2012) Self-formation of optic cups and storable stratified neural retina from human ESCs. Cell Stem Cell 10(6):771–785

    Article  CAS  PubMed  Google Scholar 

  • Osakada F, Ikeda H, Mandai M, Wataya T, Watanabe K, Yoshimura N, Akaike A, Sasai Y, Takahashi M (2008) Toward the generation of rod and cone photoreceptors from mouse, monkey and human embryonic stem cells. Nat Biotechnol 26(2):215–224

    Article  CAS  PubMed  Google Scholar 

  • Osakada F, Ikeda H, Sasai Y, Takahashi M (2009a) Stepwise differentiation of pluripotent stem cells into retinal cells. Nat Protoc 4(6):811–824

    Article  CAS  PubMed  Google Scholar 

  • Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M (2009b) In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 122(Pt 17):3169–3179

    Article  CAS  PubMed  Google Scholar 

  • Parvini M, Satarian L, Parivar K, Javan M, Tondar M, Ahmad S. and Baharvand H. (2014) Human pluripotent stem cell-derived retinal pigmented epithelium in retinal treatment: from bench to bedside. Mol Neurobiol

  • Reynolds J, Lamba DA (2013) Human embryonic stem cell applications for retinal degenerations. Exp Eye Res

  • Sasai Y (2013a) Cytosystems dynamics in self-organization of tissue architecture. Nature 493(7432):318–326

    Article  CAS  PubMed  Google Scholar 

  • Sasai Y (2013b) Next-generation regenerative medicine: organogenesis from stem cells in 3D culture. Cell Stem Cell 12(5):520–530

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Hao J, Hong CC (2011) Cardiac induction of embryonic stem cells by a small molecule inhibitor of Wnt/beta-catenin signaling. ACS Chem Biol 6(2):192–197

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zahabi A, Shahbazi E, Ahmadieh H, Hassani SN, Totonchi M, Taei A, Masoudi N, Ebrahimi M, Aghdami N, Seifinejad A, Mehrnejad F, Daftarian N, Salekdeh GH, Baharvand H (2012) A new efficient protocol for directed differentiation of retinal pigmented epithelial cells from normal and retinal disease induced pluripotent stem cells. Stem Cells Dev 21(12):2262–2272

    Article  CAS  PubMed  Google Scholar 

  • Zhou J, Su P, Li D, Tsang S, Duan E, Wang F (2010) High-efficiency induction of neural conversion in human ESCs and human induced pluripotent stem cells with a single chemical inhibitor of transforming growth factor beta superfamily receptors. Stem Cells 28(10):1741–1750

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zhu Y, Carido M, Meinhardt A, Kurth T, Karl MO, Ader M, Tanaka EM (2013) Three-dimensional neuroepithelial culture from human embryonic stem cells and its use for quantitative conversion to retinal pigment epithelium. PLoS One 8(1):e54552

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Zuber ME, Gestri G, Viczian AS, Barsacchi G, Harris WA (2003) Specification of the vertebrate eye by a network of eye field transcription factors. Development 130(21):5155–5167

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was funded by a grant provided by the Royan Institute and Iranian Council of Stem Cell Technology. We also express our appreciation to Miss Forough Sayyahpour and Miss Diba Rastegar because of their technical assistance.

Conflict of interest

The authors indicate no potential conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maryam Parvini.

Additional information

Editor: T. Okamoto

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

(DOCX 14 kb)

Supplementary Table 2

(DOCX 15 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Parvini, M., Parivar, K., Safari, F. et al. Generation of eye field/optic vesicle-like structures from human embryonic stem cells under two-dimensional and chemically defined conditions. In Vitro Cell.Dev.Biol.-Animal 51, 310–318 (2015). https://doi.org/10.1007/s11626-014-9835-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-014-9835-1

Keywords

Navigation