Skip to main content
Log in

Rotary bioreactor culture can discern specific behavior phenotypes in Trk-null and Trk-expressing neuroblastoma cell lines

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

Neuroblastoma is characterized by biological and genetic heterogeneity that leads to diverse, often unpredictable, clinical behavior. Differential expression of the Trk family of neurotrophin receptors strongly correlates with clinical behavior; TrkA expression is associated with favorable outcome, whereas TrkB with unfavorable outcome. Neuroblastoma cells cultured in a microgravity rotary bioreactor spontaneously aggregate into tumor-like structures, called organoids. We wanted to determine if the clinical heterogeneity of TrkA- or TrkB-expressing neuroblastomas was reflected in aggregation kinetics and organoid morphology. Trk-null SY5Y cells were stably transfected to express either TrkA or TrkB. Short-term aggregation kinetics were determined by counting the number of single (non-aggregated) viable cells in the supernatant over time. Organoids were harvested after 8 d of bioreactor culture, stained, and analyzed morphometrically. SY5Y-TrkA cells aggregated significantly slower than SY5Y and SY5Y-TrkB cells, as quantified by several measures of aggregation. SY5Y and TrkB cell lines formed irregularly shaped organoids, featuring stellate projections. In contrast, TrkA cells formed smooth (non-stellate) organoids. SY5Y organoids were slightly smaller on average, but had significantly larger average perimeter than TrkA or TrkB organoids. TrkA expression alone is sufficient to dramatically alter the behavior of neuroblastoma cells in three-dimensional, in vitro rotary bioreactor culture. This pattern is consistent with both clinical behavior and in vivo tumorigenicity, in that SY5Y-TrkA represents a more differentiated, less aggressive phenotype. The microgravity bioreactor is a useful in vitro tool to rapidly investigate the biological characteristics of neuroblastoma and potentially to assess the effect of cytotoxic as well as biologically targeted drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  • Arien-Zakay H.; Nagler A.; Galski H.; Lazarovici P. Neuronal conditioning medium and nerve growth factor induce neuronal differentiation of collagen-adherent progenitors derived from human umbilical cord blood. J. Mol. Neurosci. 32: 179–191; 2007.

    Article  PubMed  CAS  Google Scholar 

  • Barbacid M. Structural and functional properties of the TRK family of neurotrophin receptors. Ann. N. Y. Acad. Sci. 766: 442–458; 1995.

    Article  PubMed  CAS  Google Scholar 

  • Biedler J. L.; Roffler-Tarlov S.; Schachner M.; Freedman L. S. Multiple neurotransmitter synthesis by human neuroblastoma cell lines and clones. Cancer Res. 38: 3751–3757; 1978.

    PubMed  CAS  Google Scholar 

  • Brodeur G. M. Neuroblastoma: biological insights into a clinical enigma. Nat. Rev. Cancer 3: 203–216; 2003.

    Article  PubMed  CAS  Google Scholar 

  • Brodeur G. M.; Minturn J. E.; Ho R.; Simpson A. M.; Iyer R.; Varela C. R.; Light J. E.; Kolla V.; Evans A. E. Trk receptor expression and inhibition in neuroblastomas. Clin. Cancer Res. 15: 3244–3250; 2009.

    Article  PubMed  CAS  Google Scholar 

  • Bunone G.; Mariotti A.; Compagni A.; Morandi E.; Della Valle G. Induction of apoptosis by p75 neurotrophin receptor in human neuroblastoma cells. Oncogene 14: 1463–1470; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Eggert A.; Grotzer M. A.; Ikegaki N.; X-g L.; Evans A. E.; Brodeur G. M. Expression of the neurotrophin receptor TRKA downregulates expression and function of angiogenic stimulators in sh-sy5y neuroblastoma cells. Cancer Res. 62: 1802–1808; 2002.

    Google Scholar 

  • Eggert A.; Ikegaki N.; Liu X.; Chou T. T.; Lee V. M.; Trojanowski J. Q.; Brodeur G. M. Molecular dissection of TrkA signal transduction pathways mediating differentiation in human neuroblastoma cells. Oncogene 19: 2043–2051; 2000a.

    Article  PubMed  CAS  Google Scholar 

  • Eggert A.; Sieverts H.; Ikegaki N.; Brodeur G. M. p75 mediated apoptosis in neuroblastoma cells is inhibited by expression of TrkA. Med. Pediatr. Oncol. 35: 573–576; 2000b.

    Article  PubMed  CAS  Google Scholar 

  • Freed L. E.; Vunjak-Novakovic G. Microgravity tissue engineering. In Vitro Cell. Dev. Biol. Anim. 33: 381–385; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Ho R.; Eggert A.; Hishiki T.; Minturn J. E.; Ikegaki N.; Foster P.; Camoratto A. M.; Evans A. E.; Brodeur G. M. Resistance to chemotherapy mediated by TrkB in neuroblastomas. Cancer Res. 62: 6462–6466; 2002.

    PubMed  CAS  Google Scholar 

  • Ingram M.; Techy G.; Saroufeem R.; Yazan O.; Narayan K.; Goodwin T.; Spaulding G. Three-dimensional growth patterns of various human tumor cell lines in simulated microgravity of a NASA bioreactor. In Vitro Cell. Dev. Biol. Anim. 33: 459–466; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Jessup JM, Goodwin TJ, Spaulding G (1993) Prospects for use of microgravity-based bioreactors to study three-dimensional host-tumor interactions in human neoplasia. 1993 51:290-300

  • Lammens T.; Swerts K.; Derycke L.; De Craemer A.; De Brouwer S.; De Preter K.; Van Roy N.; Vandesompele J.; Speleman F.; Philippé J.; Benoit Y.; Beiske K.; Bracke M.; Laureys G. N-Cadherin in Neuroblastoma Disease: expression and clinical significance. PLoS ONE 7: e31206; 2012.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Lavenius E.; Gestblom C.; Johansson I.; Nanberg E.; Pahlman S. Transfection of TRK-A into human neuroblastoma cells restores their ability to differentiate in response to nerve growth factor. Cell Growth Differ. 6: 727–736; 1995.

    PubMed  CAS  Google Scholar 

  • Lee S.; Qiao J.; Paul P.; O’Connor K. L.; Evers M.; Chung D. H. FAK is a critical regulator of neuroblastoma liver metastasis. Oncotarget 3: 1576–1587; 2012.

    PubMed Central  PubMed  Google Scholar 

  • Licato L. L.; Prieto V. G.; Grimm E. A. A novel preclinical model of human malignant melanoma utilizing bioreactor rotating-wall vessels. In Vitro Cell Dev Biol Animal 37: 121–126; 2009.

    Article  Google Scholar 

  • Light J. E.; Koyama H.; Minturn J. E.; Ho R.; Simpson A. M.; Iyer R.; Mangino J. L.; Kolla V.; London W. B.; Brodeur G. M. Clinical significance of NTRK family gene expression in neuroblastomas. Pediatric blood & cancer 59: 226–232; 2012.

    Article  Google Scholar 

  • Maris J. M. Recent advances in neuroblastoma. New Eng J Med 362: 2202–2211; 2010.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Nakagawara A.; Arima-Nakagawara M.; Scavarda N. J.; Azar C. G.; Cantor A. B.; Brodeur G. M. Association between high levels of expression of the TRK gene and favorable outcome in human neuroblastoma. N. Engl. J. Med. 328: 847–854; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawara A.; Azar C. G.; Scavarda N. J.; Brodeur G. M. Expression and function of TRK-B and BDNF in human neuroblastomas. Molecular and cellular biology 14: 759–767; 1994a.

    PubMed Central  PubMed  CAS  Google Scholar 

  • Nakagawara A.; Azar C. G.; Scavarda N. J.; Brodeur G. M. Expression and function of TRK-B and BDNF in human neuroblastomas. Mol. Cell. Biol. 14: 759–767; 1994b.

    PubMed Central  PubMed  CAS  Google Scholar 

  • O’Connor K. C. Three-dimensional cultures of prostatic cells: tissue models for the development of novel anti-cancer therapies. Pharm. Res. 16: 486–493; 1999.

    Article  PubMed  Google Scholar 

  • Redden R. A.; Doolin E. J. Microgravity assay of neuroblastoma: in vitro aggregation kinetics and organoid morphology correlate with MYCN expression. In Vitro Cell. Dev. Biol. Anim. 47: 312–317; 2011.

    Article  PubMed  Google Scholar 

  • Rhee H. W.; Zhau H. E.; Pathak S.; Multani A. S.; Pennanen S.; Visakorpi T.; Chung L. W. K. Permanent phenotypic and genotypic changes of prostate cancer cells cultured in a three-dimensional rotating-wall vessel. In Vitro Cell. Dev. Biol. Anim. 37: 127–140; 2001.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki T.; Bogenmann E.; Shimada H.; Stram D.; Seeger R. C. Lack of high-affinity nerve growth factor receptors in aggressive neuroblastomas. J. Natl. Cancer Inst. 85: 377–384; 1993.

    Article  PubMed  CAS  Google Scholar 

  • Thiele C. J.; Li Z.; McKee A. E. On Trk—the TRKB signal transduction pathway is an increasingly important target in cancer biology. Clin. Cancer Res. 15: 5962–5967; 2009.

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  • Vamvakidou A. P.; Mondrinos M. J.; Petushi S. P.; Garcia F. U.; Lelkes P. I.; Tozeren A. Heterogeneous breast tumoroids: an in vitro assay for investigating cellular heterogeneity and drug delivery. J. Biomol. Screen. 12: 13–20; 2007.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Doolin.

Additional information

Editor: T Okamoto

Rights and permissions

Reprints and permissions

About this article

Cite this article

Redden, R.A., Iyer, R., Brodeur, G.M. et al. Rotary bioreactor culture can discern specific behavior phenotypes in Trk-null and Trk-expressing neuroblastoma cell lines. In Vitro Cell.Dev.Biol.-Animal 50, 188–193 (2014). https://doi.org/10.1007/s11626-013-9716-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-013-9716-z

Keywords

Navigation