Skip to main content

Advertisement

Log in

Choice of DMEM, formulated with or without pyruvate, plays an important role in assessing the in vitro cytotoxicity of oxidants and prooxidant nutraceuticals

  • Published:
In Vitro Cellular & Developmental Biology - Animal Aims and scope Submit manuscript

Abstract

There is much interest in the positive health effects of nutraceuticals, in particular, polyphenols, which have both antioxidant and prooxidant characteristics. Pyruvate, a scavenger of hydrogen peroxide, is a component in some, but not in all, commercial formulations of cell culture media, Dulbecco’s modified Eagle’s medium in particular. This study showed that the cytotoxicities to human fibroblasts of hydrogen peroxide, tert-butyl hydroperoxide, and various prooxidant nutraceuticals were lessened in Dulbecco’s modified Eagle’s medium formulated with pyruvate, as compared to the same medium but formulated without pyruvate. Intracellular glutathione was unaffected in cells treated with hydrogen peroxide in Dulbecco’s modified Eagle’s medium formulated with pyruvate, as compared to medium formulated without pyruvate. In these studies, intracellular glutathione was analyzed in acid-soluble cell extracts by determining the oxidation of reduced glutathione by 5,5′-dithiobis(2-nitrobenzoic acid) to glutathione disulfide, with the formation of the yellow chromagen, 5-thio-2-nitrobenzoic acid, measured spectrophotometrically at 412 nm and by the visualization of reduced glutathione in cells stained with the fluorescent dye, Cell Tracker™ Green 5-chloromethylfluorescein diacetate. A survey of various cell culture media, formulated with and without pyruvate, confirmed that the level of added hydrogen peroxide was greatly lessened in those media formulated with pyruvate. This study suggested that the pyruvate status of Dulbecco’s modified Eagle’s medium be specified in the experimental design, especially in studies involving oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.
Figure 5.
Figure 6.
Figure 7.
Figure 8.
Figure 9.

Similar content being viewed by others

References

  • Ahmad N.; Gupta S.; Mukhtar H. Green tea polyphenol epigallocatechin-3-gallate differentially mediates nuclear factor κB in cancer cells versus normal cells. Arch. Biochem. Biophys. 376: 338–346; 2000. doi:10.1006/abbi.2000.1742.

    Article  PubMed  CAS  Google Scholar 

  • Azam S.; Hadi N.; Khan N. U.; Hadi S. M. Prooxidant property of green tea polyphenols epicatechin and epigallocatechin-3-gallate: implications for anticancer properties. Toxicol. In Vitro 18: 555–561; 2004. doi:10.1016/j.tiv.2003.12.012.

    Article  PubMed  CAS  Google Scholar 

  • Babich H.; Gottesman R. T.; Liebling E. J.; Schuck A. G. Theaflavin-3-gallate and theaflavin-3′-gallate, polyphenols in black tea with prooxidant properties. Basic Clin. Pharmacol. Toxicol. 103: 66–74; 2008. doi:10.1111/j.1742-7843.2008.00232.x.

    Article  PubMed  CAS  Google Scholar 

  • Babich H.; Pinsky S. M.; Muskin E. T.; Zuckerbraun H. L. In vitro cytotoxicity of a theaflavin mixture from black tea to malignant, immortalized, and normal cells from the human oral cavity. Toxicol. In Vitro 20: 677–688; 2006. doi:10.1016/j.tiv.2005.09.017.

    Article  PubMed  CAS  Google Scholar 

  • Borenfreund E.; Babich H.; Martin-Alguacil N. Rapid chemosensitivity assay with human normal and tumor cells in vitro. In Vitro Cell. Dev. Biol. 26: 1030–1034; 1990. doi:10.1007/BF02624436.

    Article  PubMed  CAS  Google Scholar 

  • Bunger R.; Mallet R. T.; Hartman D. A. Pyruvate-enhanced phosphorylation potential and inotropism in normoxic and postischemic isolated working heart. Near-complete prevention of reperfusion contractile failure. Eur. J. Biochem. 180: 221–233; 1989. doi:10.1111/j.1432-1033.1989.tb14637.x.

    Article  PubMed  CAS  Google Scholar 

  • Chai P. C.; Long L. H.; Halliwell B. Contribution of hydrogen peroxide to the cytotoxicity of green tea and red wine. Biochem. Biophys. Res. Commun. 304: 650–654; 2003. doi:10.1016/S0006-291X(03)00655-7.

    Article  PubMed  CAS  Google Scholar 

  • Chan M. M.; Soprano K. J.; Weinstein K.; Fong D. Epigallocatechin-3-gallate delivers hydrogen peroxide to induce death of ovarian cancer cells and enhances their cisplatin susceptibility. J. Cell. Physiol. 207: 389–396; 2006. doi:10.1002/jcp.20569.

    Article  PubMed  CAS  Google Scholar 

  • Decker D. E. Phenolics: prooxidants or antioxidants. Nutr. Rev. 55: 396–398; 1997.

    Article  PubMed  CAS  Google Scholar 

  • Dringen R.; Pawlowski P. G.; Hirrlinger J. Peroxide detoxification by brain cells. J. Neurosci. Res. 79: 157–165; 2005. doi:10.1002/jnr.20280.

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Gomez F. J.; Pastor M. D.; Garcia-Martinez E. M.; Melero-Fernandez de Mera R.; Gou-Fabregas M.; Gomez-Lazaro M.; Calvo S.; Soler R. M.; Galindo M. F.; Jordan J. Pyruvate protects cerebellar granular cells from 6-hydroxydopamine-induced cytotoxicity by activating Akt signaling pathway and increasing glutathione peroxidase expression. Neurobiol. Dis. 24: 296–307; 2006. doi:10.1016/j.nbd.2006.07.005.

    Article  PubMed  CAS  Google Scholar 

  • Fukumoto L. R.; Mazza G. Assessing antioxidant and prooxidant activities of phenolic compounds. J. Agric. Food Chem. 48: 3597–3604; 2000. doi:10.1021/jf000220w.

    Article  PubMed  CAS  Google Scholar 

  • Garcia C. K.; Goldstein J. L.; Pathak R. K.; Anderson R. G.; Brown M. S. Molecular characterization of a membrane transporter for lactate, pyruvate, and other monocarboxylates. Implications for the Cori cycle. Cell 76: 865–873; 1994. doi:10.1016/0092-8674(94)90361-1.

    Article  PubMed  CAS  Google Scholar 

  • Griffin F. M.; Ashland G.; Capizzi R. L. Kinetics of phototoxicity of Fischer’s medium for L5178Y leukemic cells. Cancer Res. 41: 2241–2248; 1981.

    PubMed  CAS  Google Scholar 

  • Hagar H.; Ueda N.; Shah S. V. Role of reactive oxygen metabolites in DNA damage and cell death in chemical hypoxic injury to LLC-PK1 cells. Am. J. Physiol. 271: F209–F215; 1996.

    PubMed  CAS  Google Scholar 

  • Halliwell B. Oxidative stress in cell culture: an under-appreciated problem? FEBS Lett 540: 3–6; 2003. doi:10.1016/S0014-5793(03)00235-7.

    Article  PubMed  CAS  Google Scholar 

  • Hegde K. R.; Varma S. D. Prevention of oxidative stress to the retina by pyruvate. Ophthalmologica 222: 194–198; 2008. doi:10.1159/000126083.

    Article  PubMed  CAS  Google Scholar 

  • Inoue S.; Ito K.; Yamamoto K.; Kawanishi S. Caffeic acid causes metal-dependent damage to cellular and isolated DNA through H2O2 formation. Carcinogenesis 13: 1497–1502; 1992. doi:10.1093/carcin/13.9.1497.

    Article  PubMed  CAS  Google Scholar 

  • Jagtap J. C.; Chandele A.; Chopde B. A.; Shastry P. Sodium pyruvate protects against H2O2 mediated apoptosis in human neuroblastoma cell line SK-N-MC. J Chem Neuroanat 26: 109–113; 2003. doi:10.1016/S0891-0618(03)00037-1.

    Article  PubMed  CAS  Google Scholar 

  • Lambert J. D.; Kwon S.-J.; Hong J.; Yang C. S. Salivary hydrogen peroxide generation produced by holding or chewing tea polyphenols in the oral cavity. Free Rad. Res. 41: 850–853; 2007. doi:10.1080/10715760601091659.

    Article  CAS  Google Scholar 

  • Lapidot T.; Walker M. D.; Kanner J. Can apple antioxidants inhibit tumor cell proliferation? Generation of H2O2 during interaction of phenolic compounds with cell culture media. J. Agric. Food Chem. 50: 3156–3160; 2002a. doi:10.1021/jf011522g.

    Article  PubMed  CAS  Google Scholar 

  • Lapidot T.; Walker M. D.; Kanner J. Antioxidant and prooxidant effects of phenolics on pancreatic β-cells in vitro. J. Agric. Food Chem. 50: 7220–7225; 2002b. doi:10.1021/jf020615a.

    Article  PubMed  CAS  Google Scholar 

  • Lee K.; Hur H. J.; Lee H. J.; Lee C. Y. Antiproliferative effects of dietary phenolic substances and hydrogen peroxide. J. Agric. Food Chem. 53: 1990–1995; 2005. doi:10.1021/jf0486040.

    Article  PubMed  CAS  Google Scholar 

  • Long L. H.; Clement M. V.; Halliwell B. Artifacts in cell culture: Rapid generation of hydrogen peroxide on addition of (−)-epigallocatechin, (−)-epigallocatechin gallate, (+)-catechin, and quercetin to commonly used cell culture media. Biochem. Biophys. Res. Commun. 273: 50–53; 2000. doi:10.1006/bbrc.2000.2895.

    Article  PubMed  CAS  Google Scholar 

  • Lu J.; Ho C.-T.; Ghai G.; Chan K. Y. Differential effects of theaflavin monogallates on cell growth, apoptosis, and cox-2 gene expression in cancerous versus normal cells. Cancer Res. 60: 6465–6471; 2000.

    PubMed  CAS  Google Scholar 

  • MacMichael G. The adverse effects of UV and short-wavelength visible radiation on tissue culture. Am. Biotechnol. Lab. 4: 30–31; 1986.

    CAS  Google Scholar 

  • Mallet R. T. Pyruvate: metabolic protector of cardiac performance. Proc. Soc. Exp. Biol. Med. 223: 136–148; 2000. doi:10.1046/j.1525-1373.2000.22319.x.

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa H.; Hasumi K.; Woo J.-T.; Nagai K.; Wachi M. Generation of hydrogen peroxide primarily contributes to the induction of Fe(II)-dependent apoptosis in Jurkat cells by (−)-epigallocatechin gallate. Carcinogenesis 25: 1567–1574; 2004. doi:10.1093/carcin/bgh168.

    Article  PubMed  CAS  Google Scholar 

  • Nath K. A.; Enright H.; Nutter L.; Fischereder M.; Zou J. N.; Hebbel R. P. Effect of pyruvate on oxidant injury to isolated and cellular DNA. Kidney Intern. 45: 166–176; 1994. doi:10.1038/ki.1994.20.

    Article  CAS  Google Scholar 

  • Park S. M.; Jung H. C.; Koak I. S.; Na H. Y.; Woo S. J.; Jung J. S.; Kim Y. K. Oxidant-induced cell death in renal epithelial cells: differential effects of inorganic and organic hydroperoxides. Pharmacol. Toxicol. 92: 43–50; 2003. doi:10.1034/j.1600-0773.2003.920108.x.

    Article  PubMed  CAS  Google Scholar 

  • Roques S. C.; Landrault N.; Teissedre P.-L.; Laurent C.; Besancon P.; Rouanet J.-M.; Cappriccio B. Hydrogen peroxide generation in Caco-2 cell culture medium by addition of phenolic compounds: effect of ascorbic acid. Free Rad. Res. 36: 593–599; 2002. doi:10.1080/10715760290025979.

    Article  CAS  Google Scholar 

  • Sakagami H.; Arakawa H.; Maeda M.; Satoh K.; Kadofuku T.; Fukuchi K.; Gomi K. Production of hydrogen peroxide and methionine sulfoxide by epigallocatechin gallate and antioxidants. Anticancer Res. 21: 2633–2642; 2001.

    PubMed  CAS  Google Scholar 

  • Schuck A. G.; Ausubel M. A.; Zuckerbraun H. L.; Babich H. Theaflavin-3,3′-digallate, a component of black tea: An inducer of oxidative stress and apoptosis. Toxicol. In Vitro 22: 598–609; 2008. doi:10.1016/j.tiv.2007.11.021.

    Article  PubMed  CAS  Google Scholar 

  • Shostak A.; Gotloib Z.; Wajsbrot R. V. Protective effect of pyruvate upon cultured mesothelial cells exposed to 2 mM hydrogen peroxide. Nephron. 84: 362–366; 2000. doi:10.1159/000045612.

    Article  PubMed  CAS  Google Scholar 

  • Spierenburg G. T.; Oerlemans F. T. J. J.; van Laarhoven J. P. R. M.; de Bruyn C. H. M. M. Phototoxicity of N-2-hydroxyethylpiperazine-N′-2-ethanesulfonic acid-buffered Culture media for human leukemic cell lines. Cancer Res. 44: 2253–2254; 1984.

    PubMed  CAS  Google Scholar 

  • Stoien J. D.; Wang R. J. Effect of near-ultraviolet and visible light on mammalian cells in culture. II. Formation of toxic photoproducts in tissue culture medium by blacklight. Proc. Nat. Acad. Sci. U. S. A. 71: 3961–3965; 1974. doi:10.1073/pnas.71.10.3961.

    Article  CAS  Google Scholar 

  • Ursini F.; Maiorino M.; Brigelius-Flohe R.; Aumann K. D.; Roveri A.; Schomburg D.; Flohe I. Diversity of glutathione peroxidases. Meth. Enzymol. 252: 38–53; 1995. doi:10.1016/0076-6879(95)52007-4.

    Article  PubMed  CAS  Google Scholar 

  • Wang R. J. Effect of room fluorescent light on the deterioration of tissue culture medium. In Vitro 12: 19–22; 1976. doi:10.1007/BF02832788.

    Article  PubMed  CAS  Google Scholar 

  • Wang R. J.; Nixon B. T. Identification of hydrogen peroxide as a photoproduct toxic to human cells in tissue-culture medium irradiated with “daylight” fluorescent light. In Vitro 14: 715–722; 1978. doi:10.1007/BF02616168.

    Article  PubMed  CAS  Google Scholar 

  • Wang X.; Perez E.; Liu R.; Yan L.-J.; Mallet R. T.; Yang S.-H. Pyruvate protects mitochondria from oxidative stress in human neuroblastoma SK-N-SH cells. Brain Res. 1132: 1–9; 2007. doi:10.1016/j.brainres.2006.11.032.

    Article  PubMed  CAS  Google Scholar 

  • Weisburg J. H.; Weissman D. B.; Sedaghat T.; Babich H. In vitro cytotoxicity of epigallocatechin gallate and tea extracts to cancerous and normal cells from the human oral cavity. Basic Clin. Pharmacol. Toxicol. 95: 191–200; 2004.

    PubMed  CAS  Google Scholar 

  • Yamamoto T.; Lewis J.; Wataha J.; Dickinson D.; Singh B.; Bollag W. B.; Ueta E.; Osaki T.; Athar M.; Schuster G.; Hsu S. Roles of catalase and hydrogen peroxide in green tea polyphenol-induced chemopreventive effects. J. Pharmacol. Exp. Ther. 308: 317–323; 2004. doi:10.1124/jpet.103.058891.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Appreciation is expressed to the Joseph Alexander Foundation and to the S. Daniel Abraham Honors Program at Stern College for Women, Yeshiva University for the support of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Babich.

Additional information

Editor: J. Denry Sato

Rights and permissions

Reprints and permissions

About this article

Cite this article

Babich, H., Liebling, E.J., Burger, R.F. et al. Choice of DMEM, formulated with or without pyruvate, plays an important role in assessing the in vitro cytotoxicity of oxidants and prooxidant nutraceuticals. In Vitro Cell.Dev.Biol.-Animal 45, 226–233 (2009). https://doi.org/10.1007/s11626-008-9168-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11626-008-9168-z

Keywords

Navigation