Skip to main content
Log in

Declustering of Iran earthquake catalog (1983–2017) using the epidemic-type aftershock sequence (ETAS) model

  • Research Article - Solid Earth Sciences
  • Published:
Acta Geophysica Aims and scope Submit manuscript

Abstract

The main goal of this article is to decluster Iranian plateau seismic catalog by the epidemic-type aftershock sequence (ETAS) model and compare the results with some older methods. For this purpose, Iranian plateau bounded in 24°–42°N and 43°–66°E is subdivided into three major tectonic zones: (1) North of Iran (2) Zagros (3) East of Iran. The extracted earthquake catalog had a total of 6034 earthquakes (Mw > 4) in the time span 1983–2017. The ETAS model is an accepted stochastic approach for seismic evaluation and declustering earthquake catalogs. However, this model has not yet been used to decluster the seismic catalog of Iran. Until now, traditional methods like the Gardner and Knopoff space–time window method and the Reasenberg link-based method have been used in most studies for declustering Iran earthquake catalog. Finally, the results of declustering by the ETAS model are compared with result of Gardner and Knopoff (Bull Seismol Soc Am 64(5):1363–1367, 1974), Uhrhammer (Earthq Notes 57(1):21, 1986), Gruenthal (pers. comm.) and Reasenberg (Geophys Res 90:5479–5495, 1985) declustering methods. The overall conclusion is difficult, but the results confirm the high ability of the ETAS model for declustering Iranian earthquake catalog. Use of the ETAS model is still in its early steps in Iranian seismological researches, and more parametric studies are needed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

Re:

Reasenberg

Uh:

Uhrhammer

G-K:

Gardner and Knopoff

Gr:

Gruenthal method

ETAS:

Epidemic-type aftershock sequence model

References

  • Amini H (2014) Comparing Reasenberg and Gruenthal declustering methods for north of Iran. In Second European conference on earthquake engineering and seismology

  • Bottiglieri M, Lippiello E, Godano C, de Arcangelis L (2009) Identification and spatiotemporal organization of aftershocks. J Geophys Res. https://doi.org/10.1029/2008JB005941

    Article  Google Scholar 

  • Burkhard M, Grünthal G (2009) Seismic source zone characterization for the seismic hazard assessment project PEGASOS by the Expert Group 2 (EG1b). Swiss J Geosci 102(1):149–188

    Article  Google Scholar 

  • Davis SD, Frohlich C (1991) Single-link cluster analysis, synthetic earthquake catalogs, and aftershock identification. Geophys J Int 104:289–306

    Article  Google Scholar 

  • Frohlich C, Davis SD (1990) Single-link cluster analysis as a method to evaluate spatial and temporal properties of earthquake catalogs. Geophys J Int 100:19–32

    Article  Google Scholar 

  • Gardner JK, Knopoff L (1974) Is the sequence of earthquakes in Southern California, with aftershocks removed, Poissonian? Bull Seismol Soc Am 64(5):1363–1367

    Google Scholar 

  • Gutenberg B, Richter CF (1944) Measurement error models. Bull Seismol Soc Am 34:185–188

    Google Scholar 

  • Hainzl S, Scherbaum F, Beauval C (2006) Estimating background activity based on interevent-time distribution. Bull Seismol Soc Am 96(1):313–320

    Article  Google Scholar 

  • Huang WQ, LiWX Cao XF (1994) Research on the completeness of earthquake data in the Chinese mainland (I)North China. Acta Seismol Sin 7(3):351–359

    Article  Google Scholar 

  • Jalilian A, Zhuang J (2016) ETAS: modeling earthquake data using ETAS model. R package version 0.2. https://CRAN.R-project.org/package=ETAS

  • Kagan Y, Jackson D (1991) Long-term earthquake clustering. Geophys J Int 104(1):117–134

    Article  Google Scholar 

  • Kanamori H (1977) The energy release in great earthquakes. J Geophys Res 82(20):2981–2987

    Article  Google Scholar 

  • Karimiparidari S, Zare M, Memarian H, Kijko A (2013) Iranian earthquakes, a uniform catalog with moment magnitudes. J Seismol 17(3):897–911

    Article  Google Scholar 

  • Luen B, Stark PB (2012) Poisson tests of declusteredcatalogs. Geophys J Int 189(1):691–700

    Article  Google Scholar 

  • Marsan D, Lengline O (2010) A new estimation of the decay of aftershock density with distance to the mainshock. J Geophys Res [Solid Earth]. https://doi.org/10.1029/2009JB007119

    Article  Google Scholar 

  • Mirzaei N, Gao MT, Chen YT, Wang J (1997) A uniform catalog of earthquakes for seismic hazard assessment in Iran. Acta Seismol Sin 10(6):713–726. https://doi.org/10.1007/s11589-997-0003-5

    Article  Google Scholar 

  • Molchan G, Dmitrieva O (1992) Aftershock identification: methods and new approaches. Geophys J Int 109:501–516

    Article  Google Scholar 

  • Mousavi-Bafrouei SH, Mirzaei N, Shabani E (2015) A declustered earthquake catalog for the Iranian Plateau. Ann Geophy. https://doi.org/10.4401/ag-6395

    Article  Google Scholar 

  • Ogata Y (1998) Space-time point-process models for earthquake occurrences. Ann Inst Stat Math 50(2):379–402

    Article  Google Scholar 

  • Ommi S, Zafarani H, Zare M (2016) Aftershock decay rates in the Iranian plateau. Pure Appl Geophys 173(7):2305–2324 (Springer Basel Switzerland)

    Article  Google Scholar 

  • Reasenberg P (1985) Second-order moment of central California seismicity. 1969–1982. J Geophys Res 90:5479–5495

    Article  Google Scholar 

  • Savage WU (1972) Microearthquake clustering near fairview peak, Nevada, and in the Nevada seismic zone. J Geophys Res 77(35):7049–7056

    Article  Google Scholar 

  • Shahvar MP, Zare M, Castellaro S (2013) A unified seismic catalog for the Iranian plateau (1900–2011). Seismol Res Lett 84(2):233–249

    Article  Google Scholar 

  • Uhrhammer R (1986) Characteristics of northern and central California seismicity. Earthq Notes 57(1):21

    Google Scholar 

  • Van Stiphout T, Zhuang J, Marsan D (2012) Seismicity declustering, Community online resource for statistical seismicity analysis. https://doi.org/10.5078/corssa-52382934. Available at http://www.corssa.org

  • Vere-Jones D (1970) Stochastic models for earthquake occurrence. J Roy Stat Soc: Ser B (Methodol) 32(1):1–62

    Google Scholar 

  • Wells DL, Coppersmith KJ (1994) New empirical relationships among magnitude, rupture length, rupture width, rupture area, and surface displacement. Bull Seismol Soc Am 84(4):974–1002

    Google Scholar 

  • Wiemer S (2001) A software package to analyze seismicity: ZMAP. Seismol Res Lett 72:373–382

    Article  Google Scholar 

  • Zafarani H, Soghrat M (2012) Simulation of ground motion in the Zagros region of Iran using the specific barrier model and the stochastic method. Bull Seismol Soc Am 102(5):2031–2045

    Article  Google Scholar 

  • Zare M, Amini H, Yazdi P, Sesetyan K, Demircioglu MB, Kalafat D, Erdik M, Giardini D, Asif Khan M, Tsereteli N (2014) Recent developments of the Middle East catalog. J Seismol 18(4):749–772 (Springer)

    Article  Google Scholar 

  • Zhuang J (2011) Next-day earthquake forecasts for the Japan region generated by the ETAS model. Earth Planets Space 63(3):5 (Springer Japan)

    Article  Google Scholar 

  • Zhuang J, Ogata Y, Vere-Jones D (2002) Stochastic declustering of space-time earthquake occurrences. J Am Stat Assoc 97(458):369–380

    Article  Google Scholar 

  • Zhuang J, Ogata Y, Vere-Jones D (2004) Analyzing earthquake clustering features by using stochastic reconstruction. J Geophys Res [Solid Earth]. https://doi.org/10.1029/2003JB002879

    Article  Google Scholar 

  • Zhuang J, Ogata Y, Vere-Jones D (2006) Diagnostic analysis of space-time branching processes for earthquakes. In: Baddeley A, Gregori P, Mateu J, Stoica R, Stoyan D (eds) Case Studies in Spatial Point Process Modeling. Lecture Notes in Statistics, vol 185. Springer. New York, NY, pp 275–292

    Chapter  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the funding support of Babol Noshirvani University of Technology through Grant No. BUT/388011/97. We wish to appreciate Mohammad Shahvar for his help in providing the earthquake catalog and magnitude conversation relations used in this article.

Author information

Authors and Affiliations

Authors

Contributions

HRT proposed the initial idea and guided us in the analysis. ND analyzed the data completed all experiments and wrote the manuscript. MZ directed us to create a seismic catalog and seismic zoning. AJ developed the ETAS model code. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Hamid Reza Tavakoli.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Davoudi, N., Tavakoli, H.R., Zare, M. et al. Declustering of Iran earthquake catalog (1983–2017) using the epidemic-type aftershock sequence (ETAS) model. Acta Geophys. 66, 1359–1373 (2018). https://doi.org/10.1007/s11600-018-0211-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11600-018-0211-5

Keywords

Navigation