Skip to main content

Advertisement

Log in

Anatomical Evidence for the Neural Connection from the Emotional Brain to Autonomic Innervation in the Anterior Chamber Structures of the Eye

  • Published:
Current Medical Science Aims and scope Submit manuscript

Abstract

Objective

Previous studies have shown that the autonomic nervous system (ANS), which can be affected by emotions, is important in the occurrence or progression of glaucoma. The autonomic innervation distributed in the anterior chamber (AC) structures might play an efferent role in the neural regulation of intraocular pressure (IOP). This study aimed to investigate the anatomic neural connection from the emotional brain to autonomic innervation in the AC.

Methods

A retrograde trans-multisynaptic pseudorabies virus encoded with an enhanced green fluorescent protein (PRV531) and non-trans-synaptic tracer FAST Dil were injected into the right eye of mice, respectively. Fluorescent localization in the emotional brain and preganglionic nuclei was studied. Five and a half days after PRV531 injection into the right AC, fluorescent signals were observed in several emotional brain regions, including the amygdala, agranular insular cortex, lateral septal nuclei, periaqueductal gray, and hypothalamus. Autonomic preganglionic nuclei, including Edinger-Westphal nucleus, superior salivatory nucleus, and intermediolateral nucleus, were labeled using PRV531.

Results

The sensory trigeminal nuclei were not labeled using PRV531. The fluorescence signals in the nuclei mentioned above showed bilateral distribution, primarily on the ipsilateral side. Seven days after injecting FAST Dil into the AC, we observed no FAST Dil-labeled neurons in the central nervous system.

Conclusion

Our results indicate a neural connection from the emotional brain to autonomic innervation in the AC, which provides anatomical support for the emotional influence of IOP via the ANS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mabuchi F, Yoshimura K, Kashiwagi K, et al. High prevalence of anxiety and depression in patients with primary open-angle glaucoma. J Glaucoma, 2008,17(7):552–557

    Article  Google Scholar 

  2. Kong X, Yan M, Sun X, et al. Anxiety and Depression are More Prevalent in Primary Angle Closure Glaucoma Than in Primary Open-Angle Glaucoma. J Glaucoma, 2015,24(5):57–63

    Article  Google Scholar 

  3. Zhou C, Qian S, Wu P, et al. Anxiety and depression in Chinese patients with glaucoma: sociodemographic, clinical, and self-reported correlates. J Psychosom Res, 2013,75(1):75–82

    Article  Google Scholar 

  4. Zhang X, Liu Y, Wang W, et al. Why does acute primary angle closure happen? Potential risk factors for acute primary angle closure. Surv Ophthalmol, 2017,62(5):635–647

    Article  Google Scholar 

  5. Lin HC, Chien CW, Hu CC, et al. Comparison of comorbid conditions between open-angle glaucoma patients and a control cohort: a case-control study. Ophthalmology, 2010,117(11):2088–2095

    Article  Google Scholar 

  6. Skalicky S, Goldberg I. Depression and quality of life in patients with glaucoma: a cross-sectional analysis using the Geriatric Depression Scale-15, assessment of function related to vision, and the Glaucoma Quality of Life-15. J Glaucoma, 2008,17(7):546–551

    Article  Google Scholar 

  7. Lim NC, Fan CH, Yong MK, et al. Assessment of Depression, Anxiety, and Quality of Life in Singaporean Patients With Glaucoma. J Glaucoma, 2016,25(7):605–612

    Article  Google Scholar 

  8. Zhang X, Olson DJ, Le P, et al. The Association Between Glaucoma, Anxiety, and Depression in a Large Population. Am J Ophthalmol, 2017,183:37–41

    Article  Google Scholar 

  9. Berchuck S, Jammal A, Mukherjee S, et al. Impact of anxiety and depression on progression to glaucoma among glaucoma suspects. Br J Ophthalmol, 2020, 105(9):1244–1249

    Article  Google Scholar 

  10. Jung Y, Han K, Wang SM, et al. Effect of depressive symptom and depressive disorder on glaucoma incidence in elderly. Sci Rep, 2021,11(1):5888

    Article  CAS  Google Scholar 

  11. Shin DY, Jung KI, Park HYL, et al. The effect of anxiety and depression on progression of glaucoma. Sci Rep, 2021,11(1):1769

    Article  CAS  Google Scholar 

  12. Zhou RX, Li F, Gao K, et al. Effects of different types of music on intraocular pressure and the underlying mechanism. Zhonghua Yan Ke Za Zhi (Chinese), 2020,56(1):25–31

    CAS  Google Scholar 

  13. Kaluza G, Strempel I. Effects of self-relaxation methods and visual imagery on IOP in patients with open-angle glaucoma. Ophthalmologica, 1995,209(3):122–128

    Article  CAS  Google Scholar 

  14. Jasien JV, Girkin CA, Downs JC. Effect of Anesthesia on Intraocular Pressure Measured With Continuous Wireless Telemetry in Nonhuman Primates. Invest Ophthalmol Vis Sci, 2019,60(12):3830–3834

    Article  CAS  Google Scholar 

  15. Keil MF, Briassoulis G, Gokarn N, et al. Anxiety phenotype in mice that overexpress protein kinase A. Psychoneuroendocrinology, 2012,37(6):836–843

    Article  CAS  Google Scholar 

  16. Kreibig SD. Autonomic nervous system activity in emotion: a review. Biol Psychol, 2010,84(3):394–421

    Article  Google Scholar 

  17. Volders PG. Novel insights into the role of the sympathetic nervous system in cardiac arrhythmogenesis. Heart Rhythm, 2010,7(12):1900–1906

    Article  Google Scholar 

  18. Fournier A, Mondillon L, Luminet O, et al. Interoceptive Abilities in Inflammatory Bowel Diseases and Irritable Bowel Syndrome. Front Psychiatry, 2020,11:229

    Article  Google Scholar 

  19. Pellissier S, Bonaz B. The Place of Stress and Emotions in the Irritable Bowel Syndrome. Vitam Horm, 2017, 103:327–354

    Article  CAS  Google Scholar 

  20. Fukudo S. Stress and visceral pain: focusing on irritable bowel syndrome. Pain, 2013,154(Suppl 1):S63–S70

    Article  CAS  Google Scholar 

  21. Wehrwein EA, Orer HS, Barman SM. Overview of the Anatomy, Physiology, and Pharmacology of the Autonomic Nervous System. Compr Physiol, 2016,6(3):1239–1278

    Article  Google Scholar 

  22. Carnevali L, Montano N, Statello R, et al. Rodent models of depression-cardiovascular comorbidity: Bridging the known to the new. Neurosci Biobehav Rev, 2017,76(Pt A):144–153

    Article  Google Scholar 

  23. Bajkó Z, Szekeres CC, Kovács KR, et al. Anxiety, depression and autonomic nervous system dysfunction in hypertension. J Neurol Sci, 2012,317(1–2):112–116

    Article  Google Scholar 

  24. Sgoifo A, Carnevali L, Alfonso Mde L, et al. Autonomic dysfunction and heart rate variability in depression. Stress, 2015,18(3):343–352

    Article  Google Scholar 

  25. Budavari AI, Olden KW. Psychosocial aspects of functional gastrointestinal disorders. Gastroenterol Clin North Am, 2003, 32(2):477–506

    Article  Google Scholar 

  26. Fond G, Loundou A, Hamdani N, et al. Anxiety and depression comorbidities in irritable bowel syndrome (IBS): a systematic review and meta-analysis. Eur Arch Psychiatry Clin Neurosci, 2014,264(8):651–660

    Article  Google Scholar 

  27. Jordan C, Sin J, Fear NT, et al. A systematic review of the psychological correlates of adjustment outcomes in adults with inflammatory bowel disease. Clin Psychol Rev, 2016,47:28–40

    Article  Google Scholar 

  28. Furness JB, Callaghan BP, Rivera LR, et al. The enteric nervous system and gastrointestinal innervation: integrated local and central control. Adv Exp Med Biol, 2014,817:39–71

    Article  Google Scholar 

  29. Salvioli B, Pellegatta G, Malacarne M, et al. Autonomic nervous system dysregulation in irritable bowel syndrome. Neurogastroenterol Motil, 2015,27(3):423–430

    Article  CAS  Google Scholar 

  30. Myers B, Greenwood-Van Meerveld B. Role of anxiety in the pathophysiology of irritable bowel syndrome: importance of the amygdala. Front Neurosci, 2009,3:47

    Article  Google Scholar 

  31. Liu Q, Wang EM, Yan XJ, et al. Autonomic functioning in irritable bowel syndrome measured by heart rate variability: a meta-analysis. J Dig Dis, 2013,14(12):638–646

    Article  Google Scholar 

  32. Sadowski A, Dunlap C, Lacombe A, et al. Alterations in Heart Rate Variability Associated With Irritable Bowel Syndrome or Inflammatory Bowel Disease: A Systematic Review and Meta-Analysis. Clin Transl Gastroenterol, 2020,12(1):e00275

    Article  Google Scholar 

  33. La Rovere MT, Christensen JH. The autonomic nervous system and cardiovascular disease: role of n-3 PUFAs. Vascul Pharmacol, 2015,71:1–10

    Article  CAS  Google Scholar 

  34. Eckberg DL, Drabinsky M, Braunwald E. Defective cardiac parasympathetic control in patients with heart disease. N Engl J Med, 1971,285(16):877–883

    Article  CAS  Google Scholar 

  35. Pessoa L, McMenamin B. Dynamic Networks in the Emotional Brain. Neuroscientist, 2017,23(4):383–396

    Article  Google Scholar 

  36. Naliboff BD, Berman S, Chang L, et al. Sex-related differences in IBS patients: central processing of visceral stimuli. Gastroenterology, 2003,124(7):1738–1747

    Article  Google Scholar 

  37. Wilder-Smith CH, Schindler D, Lovblad K, et al. Brain functional magnetic resonance imaging of rectal pain and activation of endogenous inhibitory mechanisms in irritable bowel syndrome patient subgroups and healthy controls. Gut, 2004,53(11):1595–1601

    Article  CAS  Google Scholar 

  38. Naliboff BD, Derbyshire SW, Munakata J, et al. Cerebral activation in patients with irritable bowel syndrome and control subjects during rectosigmoid stimulation. Psychosom Med, 2001,63(3):365–375

    Article  CAS  Google Scholar 

  39. Agostini A, Filippini N, Benuzzi F, et al. Functional magnetic resonance imaging study reveals differences in the habituation to psychological stress in patients with Crohn’s disease versus healthy controls. J Behav Med, 2013,36(5):477–487

    Article  Google Scholar 

  40. Jiang F, Yu C, Zuo MJ, et al. Frequency-dependent neural activity in primary angle-closure glaucoma. Neuropsychiatr Dis Treat, 2019,15:271–282

    Article  Google Scholar 

  41. Chen W, Zhang L, Xu Y G, et al. Primary angle-closure glaucomas disturb regional spontaneous brain activity in the visual pathway: an fMRI study. Neuropsychiatr Dis Treat, 2017,13:1409–1417

    Article  Google Scholar 

  42. Di Ciò F, Garaci F, Minosse S, et al. Reorganization of the structural connectome in primary open angle Glaucoma. Neuroimage Clin, 2020,28:102419

    Article  Google Scholar 

  43. Li T, Liu Z, Li J, et al. Altered amplitude of low-frequency fluctuation in primary open-angle glaucoma: a resting-state FMRI study. Invest Ophthalmol Vis Sci, 2014,56(1):322–329

    Article  Google Scholar 

  44. Goel M, Picciani RG, Lee RK, et al. Aqueous humor dynamics: a review. Open Ophthalmol J, 2010,4:52–59

    Article  CAS  Google Scholar 

  45. McDougal DH, Gamlin PD. Autonomic control of the eye. Compr Physiol, 2015,5(1):439–473

    Google Scholar 

  46. Kozicz T, Bittencourt JC, May PJ, et al. The Edinger-Westphal nucleus: a historical, structural, and functional perspective on a dichotomous terminology. J Comp Neurol, 2011,519(8):1413–1434

    Article  Google Scholar 

  47. Ruskell GL. Sympathetic innervation of the ciliary muscle in monkeys. Exp Eye Res, 1973,16(3):183–190

    Article  CAS  Google Scholar 

  48. Selbach JM, Gottanka J, Wittmann M, et al. Efferent and afferent innervation of primate trabecular meshwork and scleral spur. Invest Ophthalmol Vis Sci, 2000,41(8):2184–2191

    CAS  Google Scholar 

  49. Yang F, Zhu X, Liu X, et al. Anatomical evidence for the efferent pathway from the hypothalamus to autonomic innervation in the anterior chamber structures of eyes. Exp Eye Res, 2021,202:108367

    Article  CAS  Google Scholar 

  50. LeDoux JE. Emotion circuits in the brain. Annu Rev Neurosci, 2000,23:155–184

    Article  CAS  Google Scholar 

  51. Jia F, Lv P, Miao H, et al. Optimization of the Fluorescent Protein Expression Level Based on Pseudorabies Virus Bartha Strain for Neural Circuit Tracing. Front Neuroanat, 2019,13:63

    Article  CAS  Google Scholar 

  52. Liu H, Zhu X, Ling Y, et al. Anatomic Evidence for Information Exchange between Primary Afferent Sensory Neurons Innervating the Anterior Eye Chamber and the Dura Mater in Rat. Invest Ophthalmol Vis Sci, 2018,59(8):3424–3430

    Article  CAS  Google Scholar 

  53. Isakova LS, Danilov GE, Egorkina SB, et al. Hormonal homeostasis and intraocular pressure in chronic emotional stress caused by influences acting on the amygdala. Fiziol Zh SSSR Im I M Sechenova (Russian), 1989,75(1):124–130

    CAS  Google Scholar 

  54. Egorkina SB, Danilov GE. Changes in intraocular pressure in response to experimental testing of the amygdaloid complex. Fiziol Zh SSSR Im I M Sechenova (Russian), 1985,71(6):714–718

    CAS  Google Scholar 

  55. Samuels BC, Hammes NM, Johnson PL, et al. Dorsomedial/Perifornical hypothalamic stimulation increases intraocular pressure, intracranial pressure, and the translaminar pressure gradient. Invest Ophthalmol Vis Sci, 2012,53(11):7328–7335

    Article  Google Scholar 

  56. Myagkov AV, Danilov GE, Fatykhov IR. The correcting influence of the locus ceruleus on ophthalmic hypertension of hypothalamic origin. Neurosci Behav Physiol, 2004,34(1):97–100

    Article  CAS  Google Scholar 

  57. Martin EI, Ressler KJ, Binder E, et al. The neurobiology of anxiety disorders: brain imaging, genetics, and psychoneuroendocrinology. Clin Lab Med, 2010,30(4):865–891

    Article  Google Scholar 

  58. Hoehn-Saric R, McLeod DR, Funderburk F, et al. Somatic symptoms and physiologic responses in generalized anxiety disorder and panic disorder: an ambulatory monitor study. Arch Gen Psychiatry, 2004, 61(9):913–921

    Article  Google Scholar 

  59. Wang J, Li T, Sabel BA, et al. Structural brain alterations in primary open angle glaucoma: a 3T MRI study. Sci Rep, 2016,6:18969

    Article  CAS  Google Scholar 

  60. Burbridge S, Stewart I, Placzek M, Development of the Neuroendocrine Hypothalamus. Compr Physiol, 2016,6(2):623–643

    Article  Google Scholar 

  61. Benarroch EE, The central autonomic network: functional organization, dysfunction, and perspective. Mayo Clin Proc, 1993,68(10):988–1001

    Article  CAS  Google Scholar 

  62. Bruinstroop E, Fliers E, Kalsbeek A. Hypothalamic control of hepatic lipid metabolism via the autonomic nervous system. Best Pract Res Clin Endocrinol Metab, 2014,28(5):673–684

    Article  CAS  Google Scholar 

  63. Coote J H. A role for the paraventricular nucleus of the hypothalamus in the autonomic control of heart and kidney. Exp Physiol, 2005,90(2):169–173

    Article  CAS  Google Scholar 

  64. Guyenet PG. The sympathetic control of blood pressure. Nat Rev Neurosci, 2006,7(5):335–346

    Article  CAS  Google Scholar 

  65. Gloster J, Greaves DP. Effect of diencephalic stimulation upon intra-ocular pressure. Br J Ophthalmol, 1957,41(9): 513–532

    Article  CAS  Google Scholar 

  66. Von Sallmann L, Lowenstein O. Responses of intraocular pressure, blood pressure, and cutaneous vessels to electric stimulation in the diencephalon: the ninth Francis I. Proctor Lecture. Am J Ophthalmol, 1955,39(4 Pt 2):11–29

    Article  CAS  Google Scholar 

  67. Schmerl E, Steinberg B, The role of the diencephalon in regulating ocular tension. Am J Ophthalmol, 1948,31(2):155–158

    Article  CAS  Google Scholar 

  68. Gloster J, Greaves DP. Some ocular effects of diencephalic stimulation in the experimental animal. Proc R Soc Med, 1956,49(9):675–680

    CAS  Google Scholar 

  69. Schemerl E, Steinberg B. Separation of diencephalic centers concerned with pupillary motility and ocular tension. Am J Ophthalmol, 1950,33(9):1379–1381

    Article  CAS  Google Scholar 

  70. Meijer JH, Rietveld WJ, Neurophysiology of the suprachiasmatic circadian pacemaker in rodents. Physiol Rev, 1989,69(3):671–707

    Article  CAS  Google Scholar 

  71. Cox CE, Fitzgerald CR, King RL. A preliminary report on the supraoptic nucleus and control of intraocular pressure. Invest Ophthalmol, 1975, 4(1):26–28

    Google Scholar 

  72. Yoshizawa T. New experimental model system to study central regulation of intraocular pressure. Jpn J Ophthalmol, 1993,37(1):9–15

    CAS  Google Scholar 

  73. Gong JL, Lou XT, Yuan YX, et al. The increased expression of GABA receptors within the arcuate nucleus is associated with high intraocular pressure. Mol Vis, 2018,24:574–586

    CAS  Google Scholar 

  74. Jin J, Xu GX, Yuan ZL. Influence of the hypothalamic arcuate nucleus on intraocular pressure and the role of opioid peptides. PLoS One, 2014,9(4):e82315

    Article  Google Scholar 

  75. Allen GV, Cechetto DF. Functional and anatomical organization of cardiovascular pressor and depressor sites in the lateral hypothalamic area. II. Ascending projections. J Comp Neurol, 1993,330(3):421–438

    Article  CAS  Google Scholar 

  76. Renaud LP, Hopkins DA. Amygdala afferents from the mediobasal hypothalamus: an electrophysiological and neuroanatomical study in the rat. Brain Res, 1977, 121(2):201–213

    Article  CAS  Google Scholar 

  77. Leonard CM, Scott JW. Origin and distribution of the amygdalofugal pathways in the rat: an experimental neuroanatomical study. J Comp Neurol, 1971,141(3):313–329

    Article  CAS  Google Scholar 

  78. Myers B, Mark Dolgas C, Kasckow J, et al. Central stress-integrative circuits: forebrain glutamatergic and GABAergic projections to the dorsomedial hypothalamus, medial preoptic area, and bed nucleus of the stria terminalis. Brain Struct Funct, 2014,219(4):1287–1303

    Article  CAS  Google Scholar 

  79. Ulrich-Lai YM, Jones KR, Ziegler DR, et al. Forebrain origins of glutamatergic innervation to the rat paraventricular nucleus of the hypothalamus: differential inputs to the anterior versus posterior subregions. J Comp Neurol, 2011,519(7):1301–1319

    Article  CAS  Google Scholar 

  80. Takeuchi Y, Fukui Y, Ichiyama M, et al. Direct amygdaloid projections to the superior salivatory nucleus: a light and electron microscopic study in the cat. Brain Res Bull, 1991,27(1):85–92

    Article  CAS  Google Scholar 

  81. Dos Santos Júnior ED, Da Silva AV, Da Silva KR, et al. The centrally projecting Edinger-Westphal nucleus—I: Efferents in the rat brain. J Chem Neuroanat, 2015,68: 22–38

    Article  Google Scholar 

  82. Méndez-Ruette M, Linsambarth S, Moraga-Amaro R, et al. The Role of the Rodent Insula in Anxiety. Front Physiol, 2019,10:330

    Article  Google Scholar 

  83. Kim SY, Adhikari A, Lee SY, et al. Diverging neural pathways assemble a behavioural state from separable features in anxiety. Nature, 2013,496(7444):219–223

    Article  CAS  Google Scholar 

  84. Degroot A, Kashluba S, Treit D. Septal GABAergic and hippocampal cholinergic systems modulate anxiety in the plus-maze and shock-probe tests. Pharmacol Biochem Behav, 2001,69(3–4):391–399

    Article  CAS  Google Scholar 

  85. Mitra A, Lenglos C, Timofeeva E. Inhibition in the lateral septum increases sucrose intake and decreases anorectic effects of stress. Eur J Neurosci, 2015,41(4):420–433

    Article  Google Scholar 

  86. Buhle JT, Kober H, Ochsner KN, et al. Common representation of pain and negative emotion in the midbrain periaqueductal gray. Soc Cogn Affect Neurosci, 2013,8(6):609–616

    Article  Google Scholar 

  87. Allen GV, Saper CB, Hurley KM, et al. Organization of visceral and limbic connections in the insular cortex of the rat. J Comp Neurol, 1991,311(1):1–16

    Article  CAS  Google Scholar 

  88. Sripanidkulchai K, Sripanidkulchai B, Wyss JM. The cortical projection of the basolateral amygdaloid nucleus in the rat: a retrograde fluorescent dye study. J Comp Neurol, 1984,229(3):419–431

    Article  CAS  Google Scholar 

  89. Yasui Y, Breder CD, Saper CB, et al. Autonomic responses and efferent pathways from the insular cortex in the rat. J Comp Neurol, 1991,303(3):355–374

    Article  CAS  Google Scholar 

  90. Benarroch EE. Periaqueductal gray: an interface for behavioral control. Neurology, 2012,78(3):210–217

    Article  Google Scholar 

  91. Kubo T, Kanaya T, Numakura H, et al. The lateral septal area is involved in mediation of immobilization stress-induced blood pressure increase in rats. Neurosci Lett, 2002,318(1):25–28

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Fu-qiang Xu or Hai-xia Liu.

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest regarding the publication of this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, L., Yang, F., Liu, Q. et al. Anatomical Evidence for the Neural Connection from the Emotional Brain to Autonomic Innervation in the Anterior Chamber Structures of the Eye. CURR MED SCI 42, 417–425 (2022). https://doi.org/10.1007/s11596-022-2571-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-022-2571-y

Key words