Skip to main content
Log in

Bioinformatics-based Identification of Key Pathways and Hub Genes of Traumatic Brain Injury in a Rat Model

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Traumatic brain injury (TBI) is a common injury caused by external forces that lead to damaged brain function or pathological changes in the brain tissue. To explore the molecular mechanism and the hub genes of TBI, we downloaded gene expression profiles of the TBI model of rat and the sham control for the subsequent gene set enrichment analysis, pathway analysis and protein-protein interactions analysis. The results of Gene Ontology and Kyoto Encyclopedia of Genes and Genomes analysis indicated that multiple biological pathways, including immune response, inflammatory response and cellular response to interleukin-1, as well as signaling pathways, such as tumor necrosis factor signaling pathway, chemokine signaling pathway, cytokine-cytokine receptor interaction, Toll-like receptor signaling pathway and nuclear factor kappa B signaling pathway were implicated in the TBI. In conclusion, this study provides insights into the molecular mechanism of TBI by screening the differentially expressed genes and hub genes that can be used as biomarkers and therapeutic targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Menon DK, Schwab K, Wright DW, et al. Position statement: definition of traumatic brain injury. Arch Phys Med Rehabil, 2010,91(11):1637–1640

    Article  PubMed  Google Scholar 

  2. Maas AIR, Menon DK, Adelson PD, et al. Traumatic brain injury: integrated approaches to improve prevention, clinical care, and research. Lancet Neurol, 2017,16(12):987–1048

    Article  PubMed  Google Scholar 

  3. Hinzman JM, Thomas TC, Burmeister JJ, et al. Diffuse brain injury elevates tonic glutamate levels and potassium-evoked glutamate release in discrete brain regions at two days post-injury: an enzyme-based microelectrode array study. J Neurotrauma, 2010,27(5):889–899

    Article  PubMed  PubMed Central  Google Scholar 

  4. Nikolian VC, Dekker SE, Bambakidis T, et al. Improvement of Blood-Brain Barrier Integrity in Traumatic Brain Injury and Hemorrhagic Shock Following Treatment With Valproic Acid and Fresh Frozen Plasma. Crit Care Med, 2018,46(1):e59–e66

    Article  PubMed  Google Scholar 

  5. Loane DJ, Faden AI. Neuroprotection for traumatic brain injury: translational challenges and emerging therapeutic strategies. Trends Pharmacol Sci, 2010,31(12):596–604

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hui J, Liu R, Zhang H, et al. Screening and identification of critical biomarkers in erectile dysfunction: evidence from bioinformatic analysis. PeerJ, 2020,8:e8653

    Article  PubMed  PubMed Central  Google Scholar 

  7. Shojo H, Borlongan CV, Mabuchi T. Genetic and Histological Alterations Reveal Key Role of Prostaglandin Synthase and Cyclooxygenase 1 and 2 in Traumatic Brain Injury-Induced Neuroinflammation in the Cerebral Cortex of Rats Exposed to Moderate Fluid Percussion Injury. Cell Transplant, 2017,26(7):1301–1313

    Article  PubMed  PubMed Central  Google Scholar 

  8. Barrett T, Troup DB, Wilhite SE, et al. NCBI GEO: archive for functional genomics data sets—10 years on. Nucleic Acids Res, 2011,39:D1005–D1010

    Article  CAS  PubMed  Google Scholar 

  9. Shojo H, Kaneko Y, Mabuchi T, et al. Genetic and histologic evidence implicates role of inflammation in traumatic brain injury-induced apoptosis in the rat cerebral cortex following moderate fluid percussion injury. Neuroscience, 2010,171(4):1273–1282

    Article  CAS  PubMed  Google Scholar 

  10. Huber W, Carey VJ, Gentleman R, et al. Orchestrating high-throughput genomic analysis with Bioconductor. Nat Methods, 2015,12(2):115–121

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Blake JA, Chan J, Kishore R, et al. Gene Ontology Consortium: going forward. Nucleic Acids Research, 2015,43:D1049–D1056

    Article  CAS  Google Scholar 

  12. Kanehisa M, Goto S, Furumichi M, et al. KEGG for representation and analysis of molecular networks involving diseases and drugs. Nucleic Acids Res, 2010, 38: D355–D360

    Article  CAS  PubMed  Google Scholar 

  13. Kotera M, Hirakawa M, Tokimatsu T, et al. The KEGG databases and tools facilitating omics analysis: latest developments involving human diseases and pharmaceuticals. Methods Mol Biol, 2012,802:19–39

    Article  CAS  PubMed  Google Scholar 

  14. Huang DW, Sherman BT, Tan Q, et al. DAVID Bioinformatics Resources: expanded annotation database and novel algorithms to better extract biology from large gene lists. Nucleic Acids Res, 2007,35: W169–W175

    Article  PubMed  PubMed Central  Google Scholar 

  15. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc, 2008,4(1):44–57

    Article  Google Scholar 

  16. Szklarczyk D, Franceschini A, Wyder S, et al. STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res, 2015,43:D447–D452

    Article  CAS  PubMed  Google Scholar 

  17. Shannon P. Cytoscape: A Software Environment for Integrated Models of Biomolecular Interaction Networks. Genome Res, 2003,13(11):2498–2504

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Godoy DA, Lubillo S, Rabinstein AA. Pathophysiology and Management of Intracranial Hypertension and Tissular Brain Hypoxia After Severe Traumatic Brain Injury: An Integrative Approach. Neurosurg Clin N Am, 2018,29(2):195–212

    Article  PubMed  Google Scholar 

  19. Monson Kenneth L, Converse Matthew I, Manley Geoffrey T. Cerebral blood vessel damage in traumatic brain injury. Clin Biomech (Bristol Avon), 2019,64:98–113

    Article  CAS  Google Scholar 

  20. Anghinah R, Amorim RLO, Paiva WS, et al. Traumatic brain injury pharmacological treatment: recommendations. Arquivos de Neuro-Psiquiatria, 2018, 76(2):100–103

    Article  PubMed  Google Scholar 

  21. Abou El Fadl MH, O’Phelan KH. Management of Traumatic Brain Injury: An Update. Neurosurg Clin N Am, 2018,29(2):213–221

    Article  PubMed  Google Scholar 

  22. Goodwin S, Mcpherson JD, Mccombie WR. Coming of age: ten years of next-generation sequencing technologies. Nat Rev Genet, 2016,17(6):333–351

    Article  CAS  PubMed  Google Scholar 

  23. van Dam S, Craig T, de Magalhñes JP. GeneFriends: a human RNA-seq-based gene and transcript co-expression database. Nucleic Acids Res, 2015,43:D1124–D1132

    Article  CAS  PubMed  Google Scholar 

  24. Miao M, De Clercq E, Li G. Clinical significance of chemokine receptor antagonists. Expert Opin Drug Metab Toxicol, 2020,16(1):11–30

    Article  PubMed  Google Scholar 

  25. Woodcock T, Morganti-Kossmann MC. The role of markers of inflammation in traumatic brain injury. Front Neurol, 2013,4:18

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Förstner P, Rehman R, Anastasiadou S, et al. Neuroinflammation after Traumatic Brain Injury Is Enhanced in Activating Transcription Factor 3 Mutant Mice. J Neurotrauma, 2018,35(19):2317–2329

    Article  PubMed  Google Scholar 

  27. Semple BD, Bye N, Rancan M, et al. Role of CCL2 (MCP-1) in traumatic brain injury (TBI): evidence from severe TBI patients and CCL2-/- mice. J Cereb Blood Flow Metab, 2010,30(4):769–782

    Article  PubMed  Google Scholar 

  28. Woodcock TM, Frugier T, Nguyen TT, et al. The scavenging chemokine receptor ACKR2 has a significant impact on acute mortality rate and early lesion development after traumatic brain injury. PLoS One, 2017,12:e0188305

    Article  PubMed  PubMed Central  Google Scholar 

  29. Semple BD, Bye N, Ziebell JM, et al. Deficiency of the chemokine receptor CXCR2 attenuates neutrophil infiltration and cortical damage following closed head injury. Neurobiol Dis, 2010,40(2):394–403

    Article  CAS  PubMed  Google Scholar 

  30. Ziebell JM, Morganti-Kossmann MC. Involvement of pro- and anti-inflammatory cytokines and chemokines in the pathophysiology of traumatic brain injury. Neurotherapeutics, 2010,7(1):22–30

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Wang Q, Tang XN, Yenari MA. The inflammatory response in stroke. J Neuroimmunol, 2007,184(1–2):53–68

    Article  CAS  PubMed  Google Scholar 

  32. Tuttolomondo A, Pecoraro R, Pinto A. Studies of selective TNF inhibitors in the treatment of brain injury from stroke and trauma: a review of the evidence to date. Drug Des Devel Ther, 2014,8:2221–38

    Article  PubMed  PubMed Central  Google Scholar 

  33. Feldman N, Rotter-Maskowitz A, Okun E. DAMPs as mediators of sterile inflammation in aging-related pathologies. Ageing Res Rev, 2015,24(Pt A):29–39

    Article  CAS  PubMed  Google Scholar 

  34. Chiu CC, Liao YE, Yang LY, et al. Neuroinflammation in animal models of traumatic brain injury. J Neurosci Methods, 2016,272:38–49

    Article  PubMed  PubMed Central  Google Scholar 

  35. Hua F, Ma J, Ha T, et al. Activation of Toll-like receptor 4 signaling contributes to hippocampal neuronal death following global cerebral ischemia/reperfusion. J Neuroimmunol, 2007,190(1–2):101–111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Yu N, Hu S, Hao Z. Benificial Effect of Stachydrine on the Traumatic Brain Injury Induced Neurodegeneration by Attenuating the Expressions of Akt/mTOR/PI3K and TLR4/NFκ-B Pathway. Transl Neurosci, 2018,9:175–182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Simon DW, McGeachy MJ, Bayir H, et al. The far-reaching scope of neuroinflammation after traumatic brain injury. Nat Rev Neurol, 2017,13(3):171–191

    Article  PubMed  PubMed Central  Google Scholar 

  38. Knoblach SM, Fan L, Faden AI. Early neuronal expression of tumor necrosis factor-alpha after experimental brain injury contributes to neurological impairment. J Neuroimmunol, 1999,95(1–2):115–125

    Article  CAS  PubMed  Google Scholar 

  39. Pachter JS, De Vries HE, Fabry Z. The Blood-Brain Barrier and Its Role in Immune Privilege in the Central Nervous System. J Neuropathol Exp Neurol, 2003,62(6):593–604

    Article  CAS  PubMed  Google Scholar 

  40. Sebire G, Hery C, Peudenier S, et al. Adhesion proteins on human microglial cells and modulation of their expression by IL1α and TNFα. Res Virol, 1993,144(1):47–52

    Article  CAS  PubMed  Google Scholar 

  41. Chodobski A, Zink BJ, Szmydynger-Chodobska J. Blood-Brain Barrier Pathophysiology in Traumatic Brain Injury. Transl Stroke Res, 2011,2(4):492–516

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pleines UE, Stover JF, Kossmann T, et al. Soluble ICAM-1 in CSF coincides with the extent of cerebral damage in patients with severe traumatic brain injury. J Neurotrauma, 1998,15(6):399–409

    Article  CAS  PubMed  Google Scholar 

  43. Habgood MD, Bye N, Dziegielewska KM, et al. Changes in blood-brain barrier permeability to large and small molecules following traumatic brain injury in mice. Eur J Neurosci, 2007,25(1):231–238

    Article  CAS  PubMed  Google Scholar 

  44. Hua F, Wang J, Ishrat T, et al. Genomic profile of Toll-like receptor pathways in traumatically brain-injured mice: effect of exogenous progesterone. J Neuroinflammation, 2011,8:42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Zhu HT, Bian C, Yuan JC, et al. Curcumin attenuates acute inflammatory injury by inhibiting the TLR4/MyD88/NF-κB signaling pathway in experimental traumatic brain injury. J Neuroinflammation, 2014,11:59

    Article  PubMed  PubMed Central  Google Scholar 

  46. Lucas K and Maes M. Role of the Toll Like Receptor (TLR) Radical Cycle in Chronic Inflammation: Possible Treatments Targeting the TLR4 Pathway. Mol Neurobiol, 2013,48(1):190–204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Park C, Cho IH, Kim D, et al. Toll-like receptor 2 contributes to glial cell activation and heme oxygenase-1 expression in traumatic brain injury. Neurosci Lett, 2008,431(2):123–128

    Article  CAS  PubMed  Google Scholar 

  48. Yu ZQ, Zha JH. Genetic ablation of toll-like receptor 2 reduces secondary brain injury caused by cortical contusion in mice. Ann Clin Lab Sci, 2012,42(1):26–33

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu-hai Wang.

Ethics declarations

There are no conflicts of interest.

Additional information

This work was supported by the Military Logistics Scientific Research Project (No. CLB20J027).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cao, Xy., Qian, X., Liu, Gd. et al. Bioinformatics-based Identification of Key Pathways and Hub Genes of Traumatic Brain Injury in a Rat Model. CURR MED SCI 41, 610–617 (2021). https://doi.org/10.1007/s11596-021-2365-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-021-2365-7

Key words

Navigation