Skip to main content
Log in

Current Progress of Phytomedicine in Glioblastoma Therapy

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Glioblastoma multiforme, an intrusive brain cancer, has the lowest survival rate of all brain cancers. The chemotherapy utilized to prevent their proliferation and propagation is limited due to modulation of complex cancer signalling pathways. These complex pathways provide infiltrative and drug evading properties leading to the development of chemotherapy resistance. Therefore, the development and discovery of such interventions or therapies that can bypass all these resistive barriers to ameliorate glioma prognosis and survival is of profound importance. Medicinal plants are comprised of an exorbitant range of phytochemicals that have the broad-spectrum capability to target intrusive brain cancers, modulate anti-cancer pathways and immunological responses to facilitate their eradication, and induce apoptosis. These phytocompounds also interfere with several oncogenic proteins that promote cancer invasiveness and metastasis, chemotherapy resistance and angiogenesis. These plants are extremely vital for promising anti-glioma therapy to avert glioma proliferation and recurrence. In this review, we acquired recent literature on medicinal plants whose extracts/bioactive ingredients are newly exploited in glioma therapeutics, and also highlighted their mode of action and pharmacological profile.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alifieris C, Trafalis DT. Glioblastoma multiforme: Pathogenesis and treatment. Pharmacol Ther, 2015,152:63–82

    CAS  PubMed  Google Scholar 

  2. Crespo I, Vital AL, Gonzalez-Tablas M, et al. Molecular and Genomic Alterations in Glioblastoma Multiforme. Am J Pathol, 2015,185(7): 1820–1833

    CAS  PubMed  Google Scholar 

  3. Hanif F, Muzaffar K, Perveen K, et al. Glioblastoma Multiforme: A Review of its Epidemiology and Pathogenesis through Clinical Presentation and Treatment. Asian Pac J Cancer Prev, 2017,18(1): 3–9

    PubMed  PubMed Central  Google Scholar 

  4. Anjum K, Shagufta BI, Abbas SQ, et al. Current status and future therapeutic perspectives of glioblastoma multiforme (GBM) therapy: A review. Biomed Pharmacother, 2017,92:681–689

    CAS  PubMed  Google Scholar 

  5. Stavrovskaya AA, Shushanov SS, Rybalkina EY. Problems of glioblastoma multiforme drug resistance. Biochem, 2016,81(2):91–100

    CAS  Google Scholar 

  6. Lee SY. Temozolomide resistance in glioblastoma multiforme. Genes Dis, 2016,3(3):198–210

    PubMed  PubMed Central  Google Scholar 

  7. Nagel ZD, Kitange GJ, Gupta SK, et al. DNA Repair Capacity in Multiple Pathways Predicts Chemoresistance in Glioblastoma Multiforme. Cancer Res, 2017,77(1): 198–206

    CAS  PubMed  Google Scholar 

  8. Ma W, Li N, An Y, et al. Effects of Temozolomide and Radiotherapy on Brain Metastatic Tumor: A Systematic Review and Meta-Analysis. World Neurosurg, 2016,92:197–205

    PubMed  Google Scholar 

  9. Greenwell M, Rahman PKSM. Medicinal Plants: Their Use in Anticancer Treatment. Int J Pharm Sci Res, 2015,6(10):4103–4112

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Shukla S, Mehta A. Anticancer potential of medicinal plants and their phytochemicals: a review. Brazilian J Bot, 2015,38(2):199–210

    Google Scholar 

  11. Salehi B, Zucca P, Sharifi-Rad M, et al. Phytotherapeutics in cancer invasion and metastasis. Phyther Res, 2018,32(8): 1425–1449

    Google Scholar 

  12. Chen W, Wang D, Du X, et al. Glioma cells escaped from cytotoxicity of temozolomide and vincristine by communicating with human astrocytes. Med Oncol, 2015,32(3): 43

    PubMed  Google Scholar 

  13. Calinescu AA, Castro MG. Microtubule targeting agents in glioma. Transl Cancer Res, 2016, 5(Suppl 1):S54–60

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Osuka S, Meir EG Van. Overcoming therapeutic resistance in glioblastoma: the way forward. J Clin Invest, 2017,127(2):415–426

    PubMed  PubMed Central  Google Scholar 

  15. Mukhtar E, Adhami VM, Mukhtar H. Targeting microtubules by natural agents for cancer therapy. Mol Cancer Ther, 2014,13(2):275–284

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Hashemi M, Gharaylou Z, Sepand MR, et al. Apoptosis Induced by Viola odorata Extract in Human Glioblastoma Multiforme. Arch Neurosci, 2019,6(1): e81233

    Google Scholar 

  17. Ordys BB, Launay S, Deighton RF, et al. The role of mitochondria in glioma pathophysiology. Mol Neurobiol, 2010,42(1): 64–75

    CAS  PubMed  Google Scholar 

  18. Chaudhuri D, Ghate NB, Singh SS, et al. Methyl gallate isolated from Spondias pinnata exhibits anticancer activity against human glioblastoma by induction of apoptosis and sustained extracellular signal-regulated kinase 1/2 activation. Pharmacogn Mag, 2015,11(42): 269–276

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Lu Y, Jiang F, Jiang H, et al. Gallic acid suppresses cell viability, proliferation, invasion and angiogenesis in human glioma cells. Eur J Pharmacol, 2010,641(2–3): 102–107

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Zheng X, Jiang F, Katakowski M, et al. ADAM17 promotes glioma cell malignant phenotype. Mol Carcinog, 2012,51(2): 150–164

    CAS  PubMed  Google Scholar 

  21. Han L, Yang Y, Yue X, et al. Inactivation of PI3K/AKT signaling inhibits glioma cell growth through modulation of β-catenin-mediated transcription. Brain Res, 2010,1366:9–17

    CAS  PubMed  Google Scholar 

  22. Zhou YX, Xin HL, Rahman K, et al. Portulaca oleracea L.: a review of phytochemistry and pharmacological effects. Biomed Res Int, 2015:925631

  23. Yan J, Sun LR, Zhou ZY, et al. Homoisoflavonoids from the medicinal plant Portulaca oleracea. Phytochemistry, 2012,80:37–41

    CAS  PubMed  Google Scholar 

  24. Rahimi VB, Mousavi SH, Haghighi S, et al. Cytotoxicity and apoptogenic properties of the standardized extract of Portulaca oleracea on glioblastoma multiforme cancer cell line (U-87): a mechanistic study. EXCLI J, 2019,18:165–186

    Google Scholar 

  25. Askari VR, Rezaee SA, Abnous K, et al. The influence of hydro-ethanolic extract of Portulaca oleracea L. on Th1/Th2 balance in isolated human lymphocytes. J Ethnopharmacol, 2016,194:1112–1121

    PubMed  Google Scholar 

  26. Jeong JC, Kim MS, Kim TH, et al. Kaempferol Induces Cell Death Through ERK and Akt-Dependent Down-Regulation of XIAP and Survivin in Human Glioma Cells. Neurochem Res, 2009,34(5): 991–1001

    CAS  PubMed  Google Scholar 

  27. Stump TA, Santee BN, Williams LP, et al. The antiproliferative and apoptotic effects of apigenin on glioblastoma cells. J Pharm Pharmacol, 2017,69(7): 907–916

    CAS  PubMed  Google Scholar 

  28. Park SE, Sapkota K, Kim S, et al. Kaempferol acts through mitogen-activated protein kinases and protein kinase B/AKT to elicit protection in a model of neuroinflammation in BV2 microglial cells. Br J Pharmacol, 2011,164(3): 1008–1025

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Sharma V, Joseph C, Ghosh S, et al. Kaempferol induces apoptosis in glioblastoma cells through oxidative stress. Mol Cancer Ther, 2007,6(9): 2544–2553

    CAS  PubMed  Google Scholar 

  30. Tran AN, Boyd NH, Walker K, et al. NOS Expression and NO Function in Glioma and Implications for Patient Therapies. Antioxid Redox Signal, 2017,26(17): 986–999

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Preethi K, Ellanghiyil S, Kuttan G, et al. Induction of apoptosis of tumor cells by some potentiated homeopathic drugs: implications on mechanism of action. Integr Cancer Ther, 2012,11(2): 172–182

    CAS  PubMed  Google Scholar 

  32. Pushpa H, Ramya N, Shibani P, et al. Screening of Antimicrobial, Antioxidant and Anticancer Activity of Ruta graveolens. Adv Biol Res, 2015,9(4): 257–264

    CAS  Google Scholar 

  33. Fadlalla K, Watson A, Yehualaeshet T, et al. Ruta graveolens extract induces DNA damage pathways and blocks Akt activation to inhibit cancer cell proliferation and survival. Anticancer Res, 2011,31(1): 233–241

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Gentile MT, Ciniglia C, Reccia MG, et al. Ruta graveolens L. Induces Death of Glioblastoma Cells and Neural Progenitors, but Not of Neurons, via ERK 1/2 and AKT Activation. PLoS One, 2015,10(3):e0118864

    PubMed  PubMed Central  Google Scholar 

  35. Baldé ES, Megalizzi V, Traoré MS, et al. In vitro antiprotozoal, antimicrobial and antitumor activity of Pavetta crassipes K. Schum leaf extracts. J Ethnopharmacol, 2010,130(3):529–535

    PubMed  Google Scholar 

  36. Bello IA, Ndukwe GI, Audu OT, et al. A bioactive flavonoid from Pavetta crassipes K. Schum. Org Med Chem Lett, 2011,1(1):14

    PubMed  PubMed Central  Google Scholar 

  37. Wilcox RM, Huseman E, Lin S, et al. Evaluation of the Anticancer Activity of Bioactive Fraction G Extracted from Pavetta crassipes in Malignant Brain Tumor Cell Lines. Am J Phytomedicine Clin Ther, 2017,5(2): 16

    Google Scholar 

  38. Bukke AN, Hadi FN, Babu KS, et al. In vitro studies data on anticancer activity of Caesalpinia sappan L. heartwood and leaf extracts on MCF7 and A549 cell lines. Data Br, 2018,19:868–877

    Google Scholar 

  39. Kim SH, Lyu HN, Kim YS, et al. Brazilin Isolated From Caesalpinia Sappan Suppresses Nuclear Envelope Reassembly by Inhibiting Barrier-To-Autointegration Factor Phosphorylation. J Pharmacol Exp Ther, 2015, 352(1):175–184

    PubMed  Google Scholar 

  40. Lee DY, Lee MK, Kim GS, et al. Brazilin inhibits growth and induces apoptosis in human glioblastoma cells. Molecules, 2013,18(2): 2449–2457

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Khan RS, Senthi M, Rao PC, et al. Cytotoxic constituents of Abutilon indicum leaves against U87MG human glioblastoma cells. Nat Prod Res, 2015,29(11): 1069–1073

    CAS  PubMed  Google Scholar 

  42. Kuete V, Dzotam JK, Voukeng IK, et al. Cytotoxicity of methanol extracts of Annona muricata, Passiflora edulis and nine other Cameroonian medicinal plants towards multi-factorial drug-resistant cancer cell lines. Springerplus, 2016,5(1): 1666

    PubMed  PubMed Central  Google Scholar 

  43. Reis RM, Silva VAO, Rosa MN, et al. Cytotoxic effect of euphol from Euphorbia tirucalli on a large panel of human cancer cell lines. J Clin Oncol, 2013,31(15_suppl): e13557–e13557

    Google Scholar 

  44. Silva VAO, Rosa MN, Miranda-Gonçalves V, et al. Euphol, a tetracyclic triterpene, from Euphorbia tirucalli induces autophagy and sensitizes temozolomide cytotoxicity on glioblastoma cells. Invest New Drugs, 2019,37(2): 223–237

    CAS  PubMed  Google Scholar 

  45. Quassinti L, Maggi F, Ortolani F, et al. Exploring new applications of tulip tree (Liriodendron tulipifera L.): leaf essential oil as apoptotic agent for human glioblastoma. Environ Sci Pollut Res, 2019,26(29): 30485–30497

    CAS  Google Scholar 

  46. Gagliano N, Moscheni C, Torri C, et al. Effect of Ukrain on matrix metalloproteinase-2 and Secreted Protein Acidic and Rich in Cysteine (SPARC) expression in human glioblastoma cells. Anticancer Drugs, 2006,17(2): 189–194

    CAS  PubMed  Google Scholar 

  47. Gagliano N, Moscheni C, Torri C, et al. Ukrain modulates glial fibrillary acidic protein, but not connexin 43 expression, and induces apoptosis in human cultured glioblastoma cells. Anticancer Drugs, 2007,18(6): 669–676

    CAS  PubMed  Google Scholar 

  48. Lee YK, Lee KW, Kim M, et al. Chelidonine Induces Caspase-Dependent and Caspase-Independent Cell Death through G2/M Arrest in the T98G Human Glioblastoma Cell Line. Evidence-Based Complement Altern Med, 2019:6318179

  49. Su Y, Bamodu OA, Tzeng YM, et al. Ovatodiolide inhibits the oncogenicity and cancer stem cell-like phenotype of glioblastoma cells, as well as potentiate the anticancer effect of temozolomide. Phytomedicine 2019,61:152840

    CAS  PubMed  Google Scholar 

  50. Boik J. Natural compounds in cancer therapy. Oregon Medical Press Princeton, MN 2001.

  51. Auffinger B, Spencer D, Pytel P, et al. The role of glioma stem cells in chemotherapy resistance and glioblastoma multiforme recurrence. Expert Rev Neurother, 2015,15(7): 741–752

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Kesarwani K, Gupta R, Mukerjee A. Bioavailability enhancers of herbal origin: an overview. Asian Pac J Trop Biomed, 2013,3(4):253–266

    CAS  PubMed  PubMed Central  Google Scholar 

  53. Puglia C, Lauro MR, Tirendi GG, et al. Modern drug delivery strategies applied to natural active compounds. Expert Opin Drug Deliv, 2017,14(6): 755–768

    CAS  PubMed  Google Scholar 

  54. Subramanian K, Sankaramourthy D, Gunasekaran M. In: Mandal SC, Mandal V, Konishi TBT-NP and DD, eds. Chapter 18 — Toxicity Studies Related to Medicinal Plants. Elsevier, 2018:491–505

  55. Neklesa TK, Winkler JD, Crews CM. Targeted protein degradation by PROTACs. Pharmacol Ther, 2017,174:138–144

    CAS  PubMed  Google Scholar 

  56. Caesar LK, Cech NB. Synergy and antagonism in natural product extracts: when 1 + 1 does not equal 2. Nat Prod Rep, 2019,36(6):869–888

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Vengoji R, Macha MA, Batra SK, et al. Natural products: a hope for glioblastoma patients. Oncotarget, 2018,9(31): 22194–22219

    PubMed  PubMed Central  Google Scholar 

  58. Trogrlić I, Trogrlić D, Trogrlić D, et al. Treatment of glioblastoma with herbal medicines. World J Surg Oncol, 2018,16(1): 28

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahad Hassan Shah.

Additional information

Conflict of Interest Statement

The author declares that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shah, F.H., Salman, S., Idrees, J. et al. Current Progress of Phytomedicine in Glioblastoma Therapy. CURR MED SCI 40, 1067–1074 (2020). https://doi.org/10.1007/s11596-020-2288-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-020-2288-8

Key words

Navigation