Skip to main content
Log in

Biomineralization Precursor Carrier System Based on Carboxyl-Functionalized Large Pore Mesoporous Silica Nanoparticles

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Bone and teeth are derived from intrafibrillarly mineralized collagen fibrils as the second level of hierarchy. According to polymer-induced liquid-precursor process, using amorphous calcium phosphate precursor (ACP) is able to achieve intrafibrillar mineralization in the case of bone biomineral in vitro. Therefore, ACP precursors might be blended with any osteoconductive scaffold as a promising bone formation supplement for in-situ remineralization of collagens in bone. In this study, mesoporous silica nanoparticles with carboxyl-functionalized groups and ultra large-pores have been synthesized and used for the delivery of liquid like biomimetic precursors (ACP). The precursor delivery capacity of the nanoparticles was verified by the precursor release profile and successful mineralization of 2D and 3D collagen models. The nanoparticles could be completely degraded in 60 days and exhibited good biocompatibility as well. The successful translational strategy for biomineralization precursors showed that biomineralization precursor laden ultra large pore mesoporous silica possessed the potential as a versatile supplement in demineralized bone formation through the induction of intrafibrillar collagen mineralization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ferreira AM, Gentile P, Chiono V, et al. Collagen for bone tissue regeneration. Acta Biomate, 2018(9):3191–3200

  2. Weiner S, Wagner HD. The material bone: structure-mechanical function relations. Annu Rev Mater Sci, 1998,28(1):271–298

    CAS  Google Scholar 

  3. Olszta MJ, Cheng X, Jee SS, et al. Bone structure and formation: A new perspective. Mat Sci Eng R, 2007,58(3–5):77–116

    Google Scholar 

  4. Jiao K, Niu LN, Ma CF, et al. Collagen Mineralization: Complementarity and Uncertainty in Intrafibrillar Mineralization of Collagen. Adv Funct Mater, 2016,26(38):6850–6850

    CAS  Google Scholar 

  5. Nudelman F, Pieterse K, George A, et al. The role of collagen in bone apatite formation in the presence of hydroxyapatite nucleation inhibitors. Nat Mater, 2010,9(12):1004

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Liu Y, Luo D, Wang T. Hierarchical structures of bone and bioinspired bone tissue engineering. Small, 2016,12(34):4611–4632

    CAS  PubMed  Google Scholar 

  7. Mahamid J, Sharir A, Addadi L, et al. Amorphous calcium phosphate is a major component of the forming fin bones of zebrafish: Indications for an amorphous precursor phase. P Natl Acad Sci USA, 2008,105(35):12 748–12 753

    CAS  Google Scholar 

  8. Shields LB, Raque GH, Glassman SD, et al. Adverse effects associated with high-dose recombinant human bone morphogenetic protein-2 use in anterior cervical spine fusion. Spine (Phila Pa 1976), 2006,31(5):542–547

    Google Scholar 

  9. Liu Y, Liu S, Luo D, et al. Hierarchically staggered nanostructure of mineralized collagen as a bone-grafting scaffold. Adv Mater, 2016,28(39):8740–8748

    CAS  PubMed  Google Scholar 

  10. Luo XJ, Yang HY, Niu LN, et al. Translation of a solution-based biomineralization concept into a carrier-based delivery system via the use of expanded-pore mesoporous silica. Acta Biomater, 2016,31:378–387

    CAS  PubMed  Google Scholar 

  11. Zhang W, Luo XJ, Niu LN, et al. Biomimetic intrafibrillar mineralization of type I collagen with intermediate precursors-loaded mesoporous carriers. Sci Rep, 2015,5:11 199

    Google Scholar 

  12. Tang FQ, Li LL, Chen D. Mesoporous silica nanoparticles: synthesis, biocompatibility and drug delivery. Adv Mater, 2012,24(12):1504–1534

    CAS  PubMed  Google Scholar 

  13. Yang YN, Yu CZ. Advances in silica based nanoparticles for targeted cancer therapy. Nanomed Nanotechnol Biol Med, 2016,12(2):317–332

    CAS  Google Scholar 

  14. Dai CL, Guo H, Lu JX, et al. Osteogenic evaluation of calcium/magnesium-doped mesoporous silica scaffold with incorporation of rhBMP-2 by synchrotron radiation-based µCT. Biomaterials, 2011,32(33):8506–8517

    CAS  PubMed  Google Scholar 

  15. Knežević NŽ, Durand JO. Large pore mesoporous silica nanomaterials for application in delivery of biomolecules. Nanoscale, 2015,7(6):2199–2209

    PubMed  Google Scholar 

  16. Mizutani M, Yamada Y, Yano K. Pore-expansion of monodisperse mesoporous silica spheres by a novel surfactant exchange method. Chem Commun, 2007, (11):1172–1174

  17. Slowing II, Wu CW, Vivero Escoto JL, et al. Mesoporous silica nanoparticles for reducing hemolytic activity towards mammalian red blood cells. Small, 2009,5(1):57–62

    CAS  PubMed  Google Scholar 

  18. Yang Q, Wang SC, Fan PW, et al. pH-responsive carrier system based on carboxylic acid modified mesoporous silica and polyelectrolyte for drug delivery. Chem Mater, 2005,17(24):5999–6003

    CAS  Google Scholar 

  19. Kim MH, Na HK, Kim YK, et al. Facile synthesis of monodispersed mesoporous silica nanoparticles with ultralarge pores and their application in gene delivery. ACS Nano, 2011,5(5):3568–3576

    CAS  PubMed  Google Scholar 

  20. Muhammad F, Guo MY, Qi WX, et al. pH-triggered controlled drug release from mesoporous silica nanoparticles via intracelluar dissolution of ZnO nanolids. J Am Chem Soc, 2011,133(23):8778–8781

    CAS  PubMed  Google Scholar 

  21. Luo Z, Cai KY, Hu Y, et al. Mesoporous silica nanoparticles end-capped with collagen: redox-responsive nanoreservoirs for targeted drug delivery. Angew Chem Int Ed, 2011,50(3):640–643

    CAS  Google Scholar 

  22. Bahadur NM, Furusawa T, Sato M, et al. Fast and facile synthesis of silica coated silver nanoparticles by microwave irradiation. J Colloid Interface Sci, 2011,355(2):312–320

    CAS  PubMed  Google Scholar 

  23. An Y, Chen M, Xue Q, et al. Preparation and self-assembly of carboxylic acid-functionalized silica. J Colloid Interface Sci, 2007,311(2):507–513

    CAS  PubMed  Google Scholar 

  24. Manzano M, Aina V, Arean C, et al. Studies on MCM-41 mesoporous silica for drug delivery: effect of particle morphology and amine functionalization. Chem Eng J, 2008,137(1):30–37

    CAS  Google Scholar 

  25. Mouslmani M, Rosenholm JM, Prabhakar N, et al. Curcumin associated poly (allylamine hydrochloride)-phosphate self-assembled hierarchically ordered nanocapsules: size dependent investigation on release and DPPH scavenging activity of curcumin. RSC Advances, 2015,5(24):18 740–18 750

    CAS  Google Scholar 

  26. Niu LN, Jee SE, Jiao K, et al. Collagen intrafibrillar mineralization as a result of the balance between osmotic equilibrium and electroneutrality. Nat Mater, 2017,16(3):370

    CAS  PubMed  Google Scholar 

  27. Zhang YZ, Zhi ZZ, Jiang TY, et al. Spherical mesoporous silica nanoparticles for loading and release of the poorly water-soluble drug telmisartan. J Control Release, 2010,145(3):257–263

    CAS  PubMed  Google Scholar 

  28. Zhang Q, Wang X, Li PZ, et al. Biocompatible, uniform, and redispersible mesoporous silica nanoparticles for cancer-targeted drug delivery in vivo. Adv Funct Mater, 2014,24(17):2450–2461

    CAS  Google Scholar 

  29. Lin YS, Haynes CL. Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc, 2010,132(13):4834–4842

    CAS  PubMed  Google Scholar 

  30. Hudson SP, Padera RF, Langer R, et al. The biocompatibility of mesoporous silicates. Biomaterials, 2008,29(30):4045–4055

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Yang K, Ma YQ. Computer simulation of the translocation of nanoparticles with different shapes across a lipid bilayer. Nat Nanotechnol, 2010,5(8):579

    CAS  PubMed  Google Scholar 

  32. Zhao Y, Sun X, Zhang G, et al. Interaction of mesoporous silica nanoparticles with human red blood cell membranes: size and surface effects. ACS Nano, 2011,5(2):1366–1375

    CAS  PubMed  Google Scholar 

  33. Souris JS, Lee CH, Cheng SH, et al. Surface chargemediated rapid hepatobiliary excretion of mesoporous silica nanoparticles. Biomaterials, 2010,31(21):5564–5574

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Chang BS, Guo J, Liu CY, et al. Surface functionalization of magnetic mesoporous silica nanoparticles for controlled drug release. J Mater Chem, 2010,20(44):9941–9947

    CAS  Google Scholar 

  35. Zhou XJ, Feng W, Qiu KX, et al. BMP-2 derived peptide and dexamethasone incorporated mesoporous silica nanoparticles for enhanced osteogenic differentiation of bone mesenchymal stem cells. ACS Appli Mater Inter, 2015,7(29):15 777–15 789

    CAS  Google Scholar 

  36. Fuchs AK, Syrovets T, Haas KA, et al. Carboxyl-and amino-functionalized polystyrene nanoparticles differentially affect the polarization profile of M1 and M2 macrophage subsets. Biomaterials, 2016,85:78–87

    CAS  PubMed  Google Scholar 

  37. Zhou MY, Du X, Li WK, et al. One-pot synthesis of redox-triggered biodegradable hybrid nanocapsules with a disulfide-bridged silsesquioxane framework for promising drug delivery. J Mater Chem B, 2017,5(23):4455–4469

    CAS  PubMed  Google Scholar 

  38. Croissant JG, Fatieiev Y, Khashab NM. Degradability and clearance of silicon, organosilica, silsesquioxane, silica mixed oxide, and mesoporous silica nanoparticles. Adv Mater, 2017,29(9):1604 634

    Google Scholar 

  39. Shadjou N, Hasanzadeh M. Bone tissue engineering using silica-based mesoporous nanobiomaterials: Recent progress. Mater Sci Eng C, 2015,55:401–409

    CAS  Google Scholar 

  40. Möller K, Bein T. Talented mesoporous silica nanoparticles. Chem Mater, 2016,29(1):371–388

    Google Scholar 

  41. Godin B, Gu J, Serda RE, et al. Tailoring the degradation kinetics of mesoporous silicon structures through PEGylation. J Biomed Mater Research A, 2010,94(4):1236–1243

    Google Scholar 

  42. Yang HY, Niu LN, Sun JL, et al. Biodegradable mesoporous delivery system for biomineralization precursors. Int J Nanomed, 2017,12:839

    CAS  Google Scholar 

  43. Wingender B, Bradley P, Saxena N, et al. Biomimetic organization of collagen matrices to template bone-like microstructures. Matrix Biol, 2016,52:384–396

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hua Wu or Xiao-juan Luo.

Additional information

Conflict of Interest Statement

The authors declare no conflict of interest.

This study was financially supported by the National Natural Science Foundation of China (No. 81600911).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, S., Wu, H. & Luo, Xj. Biomineralization Precursor Carrier System Based on Carboxyl-Functionalized Large Pore Mesoporous Silica Nanoparticles. CURR MED SCI 40, 155–167 (2020). https://doi.org/10.1007/s11596-020-2159-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-020-2159-3

Key words

Navigation