Skip to main content
Log in

Aberrant activation of Cdc2/cyclin B1 is involved in initiation of cytoskeletal pathology in murine Niemann-Pick disease type C

  • Published:
Current Medical Science Aims and scope Submit manuscript

Summary

Niemann-Pick disease type C (NPC) is a fatal, neurovisceral lipid storage disease, neuropathologically characterized by cytoplasmic sequestration of glycolipids in neurons, progressive neuronal loss, neurofibrillary tangles (NFTs) formation, and axonal spheroids (AS). Cytoskeletal pathology including accumulation of hyperphosphorylated cytoskeletal proteins is a neuropathological hallmark of the mouse model of NPC (npc mice). With a goal of elucidating the mechanisms underlying the lesion formation, we investigated the temporal and spatial characteristics of cytoskeletal lesions and the roles of cdc2, cdk4, and cdk5 in lesion formation in young npc mice. Cytoskeletal lesions were detectable in npc mice at three weeks of age. Importantly, concomitant activation of cdc2/cyclin B1 kinase and accumulation of a subsequently generated cohort of phospho-epitopes were detected. The activation of cdk4/cyclin D1 and cdk5/p25 kinases was observed during the fourth week of life in npc mice, and this activation contributed to the lesion formation. We concluded that the progression of cytoskeletal pathology in npc mice older than four weeks is accelerated by the cumulative effect of cdc2, cdk4, and cdk5 activation. Furthermore, cdc2/cyclin B1 may act as a key initial player one week earlier. Targeting cell cycle activation may be beneficial to slow down the NPC pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Patterson MC. A riddle wrapped in a mystery: understanding Niemann-Pick disease, type C. Neurologist, 2003,9(6): 301–310

    Article  PubMed  Google Scholar 

  2. Wraith JE, Guffon N, Rohrbach M, et al. Natural history of Niemann-Pick disease type C in a multicentre observational retrospective cohort study. Mol Genet Metab, 2009,98(3): 250–254

    Article  CAS  PubMed  Google Scholar 

  3. Vanier MT. Niemann-Pick disease type C. Orphanet J Rare Dis, 2010,5(1):16

    Article  PubMed  PubMed Central  Google Scholar 

  4. Malnar M, Hecimovic S, Mattsson N, et al. Bidirectional links between Alzheimer's disease and Niemann–Pick type C disease. Neurobio Dis, 2014,72,(Part A):37–47

    Article  CAS  Google Scholar 

  5. Bu B, Klunemann H, Suzuki K, et al. Niemann-Pick disease type C yields possible clue for why cerebellar neurons do not form neurofibrillary tangles. Neurobiol Dis, 2002,11(2):285–297

    Article  CAS  PubMed  Google Scholar 

  6. Bu B, Li J, Davies P, et al. Deregulation of cdk5, hyperphosphorylation, and cytoskeletal pathology in the Niemann-Pick type C murine model. J Neurosci, 2002,22(15):6515–6525

    Article  CAS  PubMed  Google Scholar 

  7. Zhang M, Li J, Chakrabarty P, et al. Cyclin-dependent kinase inhibitors attenuate protein hyperphosphorylation, cytoskeletal lesion formation, and motor defects in Niemann-Pick Type C mice. Am J Pathol, 2004,165(3):843–853

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Zhang M, Wang X, Jiang F, et al. Mitotic epitopes are incorporated into age-dependent neurofibrillary tangles in Niemann-Pick disease type C. Brain Pathol, 2010,20(2): 367–377

    Article  CAS  PubMed  Google Scholar 

  9. Husseman JW, Nochlin D, Vincent I. Mitotic activation: a convergent mechanism for a cohort of neurodegenerative diseases. Neurobiol Aging, 2000,21(6):815–828

    Article  CAS  PubMed  Google Scholar 

  10. Loftus SK, Morris JA, Carstea ED, et al. Murine model of Niemann-Pick C disease: mutation in a cholesterol homeostasis gene. Science, 1997,277(5323):232–235

    Article  CAS  PubMed  Google Scholar 

  11. Vincent I, Jicha G, Rosado M, et al. Aberrant expression of mitotic cdc2/cyclin B1 kinase in degenerating neurons of Alzheimer's disease brain. J Neurosci, 1997,17(10):3588–3598

    Article  CAS  PubMed  Google Scholar 

  12. Vincent I, Zheng JH, Dickson DW, et al. Mitotic phosphoepitopes precede paired helical filaments in Alzheimer's disease. Neurobiol Aging, 1998,19(4):287–296

    Article  CAS  PubMed  Google Scholar 

  13. O'Hare MJ, Hou ST, Morris EJ, et al. Induction and modulation of cerebellar granule neuron death by E2F-1. J Biol Chem, 2000,275(33):25358–25364

    Article  PubMed  Google Scholar 

  14. Lee H-G, Casadesus G, Zhu X, et al. Cell cycle re-entry mediated neurodegeneration and its treatment role in the pathogenesis of Alzheimer’s disease. Neurochem Int, 2009,54(2):84–88

    Article  CAS  PubMed  Google Scholar 

  15. Hallows JL, Iosif RE, Biasell RD, et al. p35/p25 is not essential for tau and cytoskeletal pathology or neuronal loss in Niemann-Pick type C disease. J Neurosci, 2006,26(10): 2738–2744

    Article  CAS  PubMed  Google Scholar 

  16. Pacheco CD, Lieberman AP. The pathogenesis of Niemann-Pick type C disease: a role for autophagy? Expert Rev Mol Med, 2008,10:e26-e26

  17. Vanier MT. Complex lipid trafficking in Niemann-Pick disease type C. J Inherit Metab Dis, 2015,38(1):187–199

    Article  CAS  PubMed  Google Scholar 

  18. Reid PC, Lin S, Vanier MT, et al. Partial blockage of sterol biosynthesis with a squalene synthase inhibitor in early postnatal Niemann-Pick type C npc nih null mice brains reduces neuronal cholesterol accumulation, abrogates astrogliosis, but may inhibit myelin maturation. J Neurosci Methods, 2008,168(1):15–25

    Article  CAS  PubMed  Google Scholar 

  19. Yan X, Yang F, Lukas J, et al. Hyperactive glial cells contribute to axonal pathologies in the spinal cord of Npc1 mutant mice. Glia, 2014,62(7):1024–1040

    Article  PubMed  Google Scholar 

  20. Karten B, Vance DE, Campenot RB, et al. Trafficking of cholesterol from cell bodies to distal axons in Niemann Pick C1-deficient neurons. J Biol Chem, 2003,278(6):4168–4175

    Article  CAS  PubMed  Google Scholar 

  21. Kennedy BE, Hundert AS, Goguen D, et al. Presymptomatic alterations in amino acid metabolism and DNA methylation in the cerebellum of a murine model of Niemann-Pick type C disease. Am J Pathol, 2016,186(6):1582–1597

    Article  CAS  PubMed  Google Scholar 

  22. Yao ES, Tang Y, Liu XH, et al. TPPU protects Tau from H2O2-induced hyperphosphorylation in HEK293/tau cells by regulating PI3K/AKT/GSK-3 beta pathway. J Huazhong Univ Sci Technol Med Sci, 2016,36(6):789–790

    Article  Google Scholar 

  23. Busser J, Geldmacher DS, and Herrup K. Ectopic cell cycle proteins predict the sites of neuronal cell death in Alzheimer's disease brain. J Neurosci, 1998,18(8):2801–2807

    Article  CAS  PubMed  Google Scholar 

  24. Malik B, Currais A, Andres A, et al. Loss of neuronal cell cycle control as a mechanism of neurodegeneration in the presenilin-1 Alzheimer's disease brain. Cell Cycle, 2008,7(5):637–646

    Article  CAS  PubMed  Google Scholar 

  25. Morillo SM, Abanto EP, Roman MJ, et al. Nerve growth factor-induced cell cycle reentry in newborn neurons is triggered by p38MAPK-dependent E2F4 phosphorylation. Mol Cell Biol, 2012,32(14):2722–2737

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Santamaria D, Barriere C, Cerqueira A, et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature, 2007,448(7155):811–815

    Article  CAS  PubMed  Google Scholar 

  27. Frade JM, Ovejero-Benito MC. Neuronal cell cycle: the neuron itself and its circumstances. Cell Cycle, 2015,14(5):712–720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Patrick GN, Zukerberg L, Nikolic M, et al. Conversion of p35 to p25 deregulates Cdk5 activity and promotes neurodegeneration. Nature, 1999,402(6762):615–622

    Article  CAS  PubMed  Google Scholar 

  29. Lopes JP, Oliveira CR, Agostinho P. Role of cyclindependent kinase 5 in the neurodegenerative process triggered by amyloid-beta and prion peptides: implications for Alzheimer's disease and prion-related encephalopathies. Cell Mol Neurobiol, 2007,27(7):943–957

    Article  CAS  PubMed  Google Scholar 

  30. Furuya T, Kim M, Lipinski M, et al. Negative regulation of Vps34 by Cdk mediated phosphorylation. Molecular cell, 2010,38(4):500–511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ishibashi S, Yamazaki T, Okamoto K. Association of autophagy with cholesterol-accumulated compartments in Niemann-Pick disease type C cells. J Clin Neurosci, 2009,16(7):954–959

    Article  CAS  PubMed  Google Scholar 

  32. Bi X, Liao G. Autophagic-lysosomal dysfunction and neurodegeneration in Niemann-Pick type C mice: lipid starvation or indigestion? Autophagy, 2007,3(6):646–648

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min Zhang  (张 旻).

Additional information

This project was supported by the National Natural Science Foundation of China (No. 81271406).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ba, L., Li, Zj., Bu, Bt. et al. Aberrant activation of Cdc2/cyclin B1 is involved in initiation of cytoskeletal pathology in murine Niemann-Pick disease type C. CURR MED SCI 37, 732–739 (2017). https://doi.org/10.1007/s11596-017-1796-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-017-1796-7

Key words

Navigation