Skip to main content
Log in

Effect of triptolide on expression of oxidative carbonyl protein in renal cortex of rats with diabetic nephropathy

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

The traditional Chinese medicine (Tripterygium wilfordiiHook.f., TWH) has been clinically used to treat primary and secondary renal diseases and proteinuria for nearly 40 years. However, there is a rare literature about the effect of triptolide (the main active ingredient of TWH) on the expression of oxidative carbonyl protein (OCP) in diabetic nephropathy (DN). This study aimed to provide experimental evidence for triptolide treatment on DN through its effect on the expression of OCP, in order to investigate the effects of triptolide on the expression of OCP in rats with DN. Sixty SD rats were randomly divided into five groups: control group, high-dose triptolide (Th) group, low-dose triptolide (Tl) group, DN model group, and positive control (benazepril) group. The DN model was established using streptozotocin. Urinary protein excretion, fasting blood glucose (FBG), superoxide dismutase (SOD) in renal homogenate, malondialdehyde (MDA) in renal homogenate and renal nitrotyrosine by immunohistochemistry, and the expression of OCP by oxyblotimmune blotting were detected. In the DN model group, rat urinary protein excretion and renal MDA were significantly increased, while renal SOD significantly decreased and nitrotyrosine expression was obviously upregulated in the kidney. After triptolide treatment, 24-h urinary protein excretion (61.96±19.00 vs. 18.32±4.78 mg/day, P<0.001), renal MDA (8.09±0.79 vs. 5.45±0.68 nmol/L, P<0.001), and nitrotyrosine expression were decreased. Furthermore, renal OCP significantly decreased, while renal SOD (82.50±19.10 vs. 124.00±20.52 U/L, P<0.001) was elevated. This study revealed that triptolide can down-regulate the expression of OCP in the renal cortex of DN rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Mima A. Inflammation and oxidative stress in diabetic nephropathy: new insights on its inhibition as new therapeutic targets. J Diabetes Res, 2013,2013(6): 685–691

    Google Scholar 

  2. Tavafi M. Diabetic nephropathy and antioxidants. J Nephropathol, 2013,2(1): 20–27

    Article  PubMed  PubMed Central  Google Scholar 

  3. Zhao ZL, Yang XQ, Jun ZQ, et al. Antioxidant activities of crude phlorotannins from sargassum hemiphyllum. J Huangzhong Univ Sci Technol Med Sci, 2016,36(3): 449–455

    Article  Google Scholar 

  4. Zhou D, Fang T, Lu LQ, et al. Neuroprotective potential of cerium oxide nanoparticles for focal cerebral ischemic stroke. J Huangzhong Univ Sci Technol Med Sci, 2016,36(4): 480–486

    Article  CAS  Google Scholar 

  5. Li ZJ, Liu Y, Du LF, et al. Evaluating arterial stiffness in type 2 diabetes patients using ultrasonic radiofrequency. J Huangzhong Univ Sci Technol Med Sci, 2016,36(3): 442–448

    Article  Google Scholar 

  6. Shen Y, Zhao HY, Wang HJ, et al. Ischemic preconditioning inhibits over-expression of arginyl-tRNA synthetase gene rars in ischemia-injured neurons. J Huangzhong Univ Sci Technol Med Sci, 2016,36(4): 554–557

    Article  CAS  Google Scholar 

  7. Ma RX, Liu LQ, Liu XM, et al. Triptolide markedly attenuates albuminuria and podocyte injury in an animal model of diabetic nephropathy. Exp Ther Med, 2013,6(3): 649–656

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Gao Q, Shen W, Qin W, et al. Treatment of db/db diabetic mice with triptolide: a novel therapy for diabetic nephropathy. Nephrol Dial Transplant, 2010,25(11): 3539–3547

    Article  CAS  PubMed  Google Scholar 

  9. Dong XG, An ZM. Retrospect and prospect of studies on Tripterygium wilfordii Hook f. Chin J Integr Med, 2005,11(2): 89–96

    Article  PubMed  Google Scholar 

  10. Dong XG, Liu SK, Song ZF. Effects of Tripterygium Wilfordii polyglycoside on renal hemodynamics in patients with renal proteinuria. Chin J Intern Med, 1999,38(3): 185–186

    Google Scholar 

  11. Jiang CB, Wei MG, Tu Y, et al. Triptolide attenuates podocyte injury by regulating expression of miRNA-344b-3p and miRNA-30b-3p in rats with adriamycin-induced nephropathy. Evid Based Complement Alternat Med, 2015,2015: 1–13

    CAS  Google Scholar 

  12. Zhu JJ, Wang BF, Hong YZ, et al. Effect of triptolide on the expression of RANTES in the renal tissue of diabetic nephropathy rats. Chin J Integ Tradit West Med, 2014,34(10): 1231–1237

    CAS  Google Scholar 

  13. Ma RX, Liu LQ, Xu Y, et al. Protective effect of triptolide on renal tissues in type 2 diabetic rats. Chin J Hypertension (Chinese), 2008,12(12): 1120–1124

    Google Scholar 

  14. Islam MS. Animal models of diabetic neuropathy: progress since 1960s. J Diabetes Res, 2013,2013(1): 353–375

    Google Scholar 

  15. Kong LL, Wu H, Cui WP, et al. Advances in murine models of diabetic nephropathy. J Diabetes Res, 2013,2013(2): 112–119

    Google Scholar 

  16. An ZM, Dong XG, Guo Y, et al. Effects and clinical significance of PTX on the oxidative stress of rats with DN. J Huangzhong Univ Sci Technol Med Sci, 2015,35(3): 356–361

    Article  CAS  Google Scholar 

  17. An ZM, Dong XG. The advances in research on commonly used method for animal models of type 2 diabetic nephropathy. Med Recapitulate, 2013,19(23): 4324–4325

    CAS  Google Scholar 

  18. Inker LA, Schmid CH, Tighiouart H, et al. Estimating glomerular filtration rate from serum creatinine and cystatin C. N Engl J Med, 2012,367: 20–29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Joshi MS, Mihm MJ, Cook AC, et al. Alterations in connexin 43 during diabetic cardiomyopathy: Competition of tyrosine nitration versus phosphorylation 43. J Diabetes, 2015,7(2): 250–259

    Article  CAS  PubMed  Google Scholar 

  20. Chen Y, Ding HL, Wang L, et al. Effects of Ad-FLT-1/PC on the expression of inflammatory factors in rats with diabetic nephropathy atherosclerosis. Nat Med J Chin, 2015,95(24): 1961–1965

    CAS  Google Scholar 

  21. Hu MX, Zhang HW, Fu Q, et al. Functional role of micro rna-19b in acinar cell necrosis in acute necrotizing pancreatitis. J Huangzhong Univ Sci Technol Med Sci, 2016,36(2): 221–225

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zeng-mei An  (安增梅).

Additional information

This project was supported by the program for Outstanding Academic Leaders Training Plan of Health System of Huangpu District of Shanghai from 2013 to 2016 year (No. 2013-18).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, Xg., An, Zm., Guo, Y. et al. Effect of triptolide on expression of oxidative carbonyl protein in renal cortex of rats with diabetic nephropathy. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 37, 25–29 (2017). https://doi.org/10.1007/s11596-017-1689-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-017-1689-9

Key words

Navigation