Skip to main content
Log in

Repetitive magnetic stimulation promotes neural stem cells proliferation by upregulating MiR-106b in vitro

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Neural stem cells (NSCs) proliferation can be influenced by repetitive transcranial magnetic stimulation (rTMS) in vivo via microRNA-106b-25 cluster, but the underlying mechanisms are poorly understood. This study investigated the involvement of microRNA-106b-25 cluster in the proliferation of NSCs after repetitive magnetic stimulation (rMS) in vitro. NSCs were stimulated by rMS (200/400/600/800/1000 pulses per day, with 10 Hz frequency and 50% maximum machine output) over a 3-day period. NSCs proliferation was detected by using ki-67 and EdU staining. Ki-67, p21, p57, cyclinD1, cyclinE, cyclinA, cdk2, cdk4 proteins and miR-106b, miR-93, miR-25 mRNAs were detected by Western blotting and qRT-PCR, respectively. The results showed that rMS could promote NSCs proliferation in a dose-dependent manner. The proportions of ki-67+ and Edu+ cells in 1000 pulses group were 20.65% and 4.00%, respectively, significantly higher than those in control group (9.25%, 2.05%). The expression levels of miR-106b and miR-93 were significantly upregulated in 600–1000 pulses groups compared with control group (P<0.05 or 0.01 for all). The expression levels of p21 protein were decreased significantly in 800/1000 pulses groups, and those of cyclinD1, cyclinA, cyclinE, cdk2 and cdk4 were obviously increased after rMS as compared with control group (P<0.05 or 0.01 for all). In conclusion, our findings suggested that rMS enhances the NSCs proliferation in vitro in a dose-dependent manner and miR-106b/p21/cdks/cyclins pathway was involved in the process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Pell GS, Roth Y, Zangen A. Modulation of cortical excitability induced by repetitive transcranial magnetic stimulation: influence of timing and geometrical parameters and underlying mechanisms. Prog Neurobiol, 2011,93(1):59–98

    Article  PubMed  Google Scholar 

  2. Touge T, Gerschlager W, Brown P, et al. Are the after- effects of low-frequency rTMS on motor cortex excitability due to changes in the efficacy of cortical synapses? Clin Neurophysiol, 2001,112(11):2138–2145

    Article  CAS  PubMed  Google Scholar 

  3. Bilek E, Schafer A, Ochs E, et al. Application of high-frequency repetitive transcranial magnetic stimulation to the DLPFC alters human prefrontal-hippocampal functional interaction. J Neurosci, 2013,33(16):7050–7056

    Article  CAS  PubMed  Google Scholar 

  4. Lisanby SH, Datto CJ, Szuba MP. ECT and TMS: past, present, and future. Depress Anxiety, 2000,12(3):115–117

    Article  CAS  PubMed  Google Scholar 

  5. Rothkegel H, Sommer M, Paulus W. Breaks during 5Hz rTMS are essential for facilitatory after effects. Clin Neurophysiol, 2009,121(3):426–430

    Article  PubMed  Google Scholar 

  6. Guo F, Han X, Zhang J, et al. Repetitive transcranial magnetic stimulation promotes neural stem cell proliferation via the regulation of MiR-25 in a rat model of focal cerebral ischemia. PLoS One, 2014,9(10):e109267

    Google Scholar 

  7. Zeng Y, Yi R, Cullen BR. Recognition and cleavage of primary microRNA precursors by the nuclear processing enzyme Drosha. EMBO J, 2005,24(1):138–148

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Saito K, Ishizuka A, Siomi H, et al. Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol, 2005,3(7):e235

    Article  PubMed Central  PubMed  Google Scholar 

  9. Kim VN, Han J, Siomi MC. Biogenesis of small RNAs in animals. Nat Rev Mol Cell Biol, 2009,10(2):126–139

    Article  CAS  PubMed  Google Scholar 

  10. Cremisi F. MicroRNAs and cell fate in cortical and retinal development. Front Cell Neurosci, 2013,7:141

    Article  PubMed Central  PubMed  Google Scholar 

  11. Perruisseau-Carrier C, Jurga M, Forraz N, et al. miRNAs stem cell reprogramming for neuronal induction and differentiation. Mol Neurobiol, 2011,43(3):215–227

    Article  CAS  PubMed  Google Scholar 

  12. Zhao C, Sun G, Li S, et al. A feedback regulatory loop involving microRNA-9 and nuclear receptor TLX in neural stem cell fate determination. Nat Struct Mol Biol, 2009,16(4):365–371

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  13. Brett JO, Renault VM, Rafalski VA, et al. The microRNA cluster miR-106b~25 regulates adult neural stem/progenitor cell proliferation and neuronal differentiation. Aging, 2011,3(2):108–124

    PubMed Central  CAS  PubMed  Google Scholar 

  14. Peck B, Schulze A. A role for the cancer-associated miR-106b~25 cluster in neuronal stem cells. Aging, 2011,3(4):329–331

    PubMed Central  CAS  PubMed  Google Scholar 

  15. Landgraf P, Rusu M, Sheridan R, et al. A mammalian microRNA expression atlas based on small RNA library sequencing. Cell, 2007,129(7):1401–1414

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  16. Morte MI, Carreira BP, Machado V, et al. Evaluation of proliferation of neural stem cells in vitro and in vivo. Curr Protoc Stem Cell Biol, 2013, Chapter 2: Unit 2D.14 doi: 10.1002/9780470151808.sc02d14s24.

    Google Scholar 

  17. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001,25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  18. Conti L, Cattaneo E. Neural stem cell systems: physiological players or in vitro entities? Nat Rev Neurosci, 2010,11(3):176–187

    CAS  PubMed  Google Scholar 

  19. Salic A, Mitchison TJ. A chemical method for fast and sensitive detection of DNA synthesis in vivo. Proc Natl Acad Sci U S A, 2008,105(7):2415–2420

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  20. Hayashi Y, Takei H, Kurosumi M. Ki67 immunohistochemical staining: the present situation of diagnostic criteria. Nihon Rinsho, 2013,70(Suppl 7):428–432

    Google Scholar 

  21. Reif A, Fritzen S, Finger M, et al. Neural stem cell proliferation is decreased in schizophrenia, but not in depression. Mol Psychiatry, 2006,11(5):514–522

    Article  CAS  PubMed  Google Scholar 

  22. Arias-Carrion O, Verdugo-Diaz L, Feria-Velasco A, et al. Neurogenesis in the subventricular zone following transcranial magnetic field stimulation and nigrostriatal lesions. J Neurosci Res, 2004,78(1):16–28

    Article  CAS  PubMed  Google Scholar 

  23. Werner S, Unsicker K, von Bohlen und Halbach O. Fibroblast growth factor-2 deficiency causes defects in adult hippocampal neurogenesis, which are not rescued by exogenous fibroblast growth factor-2. J Neurosci Res, 2011,89(10):1605–1617

    Article  CAS  PubMed  Google Scholar 

  24. Jeong CH, Kim SM, Lim JY, et al. Mesenchymal stem cells expressing brain-derived neurotrophic factor enhance endogenous neurogenesis in an ischemic stroke model. Biomed Res Int, 2014,2014:129–145

    Google Scholar 

  25. Emsley JG, Hagg T. Endogenous and exogenous ciliary neurotrophic factor enhances forebrain neurogenesis in adult mice. Exp Neurol, 2003,183(2):298–310

    Article  CAS  PubMed  Google Scholar 

  26. Rotem A, Moses E. Magnetic stimulation of one-dimensional neuronal cultures. Biophys J, 2008, 94(12):5065–5078

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Kim JY, Choi GS, Cho YW, et al. Attenuation of spinal cord injury-induced astroglial and microglial activation by repetitive transcranial magnetic stimulation in rats. J Korean Med Sci, 2013,28(2):295–299

    Article  PubMed Central  PubMed  Google Scholar 

  28. Ueyama E, Ukai S, Ogawa A, et al. Chronic repetitive transcranial magnetic stimulation increases hippocampal neurogenesis in rats. Psychiatry Clin Neurosci, 2011,65(1):77–81

    Article  PubMed  Google Scholar 

  29. Sontag W, Kalka D. No effect of pulsed electromagnetic fields on PC12 and HL-60 cells. Radiat Environ Biophys, 2006,45(1):63–71

    Article  CAS  PubMed  Google Scholar 

  30. Vlachos A, Muller-Dahlhaus F, Rosskopp J, et al. Repetitive magnetic stimulation induces functional and structural plasticity of excitatory postsynapses in mouse organotypic hippocampal slice cultures. J Neurosci, 2012,32(48): 17514–17523

    Article  CAS  PubMed  Google Scholar 

  31. Gilio F, Conte A, Vanacore N, et al. Excitatory and inhibitory after-effects after repetitive magnetic transcranial stimulation (rTMS) in normal subjects. Exp Brain Res, 2007,176(4):588–593

    Article  CAS  PubMed  Google Scholar 

  32. Yang TS, Yang XH, Chen X, et al. MicroRNA-106b in cancer-associated fibroblasts from gastric cancer promotes cell migration and invasion by targeting PTEN. FEBS Lett, 2014,588(13):2162–2169

    Article  CAS  PubMed  Google Scholar 

  33. Tan W, Li Y, Lim SG, et al. miR-106b-25/miR-17-92 clusters: polycistrons with oncogenic roles in hepatocellular carcinoma. World J Gastroenterol, 2014,20(20):5962–5972

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  34. Semo J, Sharir R, Afek A, et al. The 106b~25 microRNA cluster is essential for neovascularization after hindlimb ischaemia in mice. Eur Heart J, 2013,35(45):3212–3223

    Article  PubMed  Google Scholar 

  35. Zhang XY, Tang LZ, Ren BG, et al. Interaction of MCM7 and RACK1 for activation of MCM7 and cell growth. Am J Pathol, 2013,182(3):796–805

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  36. Ying SY, Chang CP, Lin SL. Intron-mediated RNA interference, intronic microRNAs, and applications. Methods Mol Biol, 2010,629:205–237

    PubMed  Google Scholar 

  37. Lutter D, Marr C, Krumsiek J, et al. Intronic microRNAs support their host genes by mediating synergistic and antagonistic regulatory effects. BMC Genomics, 2010, 11:224

    Article  PubMed Central  PubMed  Google Scholar 

  38. Kippin TE, Martens DJ, van der Kooy D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev, 2005,19(6):756–767

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  39. Ivey KN, Srivastava D. MicroRNAs as regulators of differentiation and cell fate decisions. Cell Stem Cell, 2010,7(1):36–41

    Article  CAS  PubMed  Google Scholar 

  40. Ivanovska I, Ball AS, Diaz RL, et al. MicroRNAs in the miR-106b family regulate p21/CDKN1A and promote cell cycle progression. Mol Cell Biol, 2008,28(7):2167–2174

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  41. Joaquin M, Gubern A, Posas F. A novel G1 checkpoint mediated by the p57 CDK inhibitor and p38 SAPK promotes cell survival upon stress. Cell Cycle, 2012,11(18): 3339–3340

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  42. Kan T, Sato F, Ito T, et al. The miR-106b-25 polycistron, activated by genomic amplification, functions as an oncogene by suppressing p21 and Bim. Gastroenterology, 2009,136(5):1689–1700

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  43. Nishioka S, Nakano D, Kitada K, et al. The cyclin- dependent kinase inhibitor p21 is essential for the beneficial effects of renal ischemic preconditioning on renal ischemia/reperfusion injury in mice. Kidney Int, 2013,85(4):871–879

    Article  PubMed  Google Scholar 

  44. von Harsdorf R, Hauck L, Mehrhof F, et al. E2F-1 overexpression in cardiomyocytes induces downregulation of p21CIP1 and p27KIP1 and release of active cyclin- dependent kinases in the presence of insulin-like growth factor I. Circ Res, 1999,85(2):128–136

    Article  Google Scholar 

  45. Puri PL, Balsano C, Burgio VL, et al. MyoD prevents cyclinA/cdk2 containing E2F complexes formation in terminally differentiated myocytes. Oncogene, 1997,14 (10):1171–1184

    Article  CAS  PubMed  Google Scholar 

  46. Marques-Torrejon MA, Porlan E, Banito A, et al. Cyclin- dependent kinase inhibitor p21 controls adult neural stem cell expansion by regulating Sox2 gene expression. Cell Stem Cell, 2012,12(1):88–100

    Article  PubMed Central  PubMed  Google Scholar 

  47. Miyagi S, Nishimoto M, Saito T, et al. The Sox2 regulatory region 2 functions as a neural stem cell-specific enhancer in the telencephalon. J Biol Chem, 2006,281 (19):13374–13381

    Article  CAS  PubMed  Google Scholar 

  48. Lange C, Huttner WB, Calegari F. Cdk4/cyclinD1 overexpression in neural stem cells shortens G1, delays neurogenesis, and promotes the generation and expansion of basal progenitors. Cell Stem Cell, 2009,5(3):320–331

    Article  CAS  PubMed  Google Scholar 

  49. Lim S, Kaldis P. Loss of Cdk2 and Cdk4 induces a switch from proliferation to differentiation in neural stem cells. Stem Cells, 2012,30(7):1509–1520

    Article  CAS  PubMed  Google Scholar 

  50. Devgan V, Mammucari C, Millar SE, et al. p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev, 2005,19(12):1485–1495

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-hua Han  (韩肖华) or Xiao-lin Huang  (黄晓琳).

Additional information

This project was supported by grants from the National Natural Science Foundation of China (No. 81071601, and No. 81171858).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, H., Han, Xh., Chen, H. et al. Repetitive magnetic stimulation promotes neural stem cells proliferation by upregulating MiR-106b in vitro . J. Huazhong Univ. Sci. Technol. [Med. Sci.] 35, 766–772 (2015). https://doi.org/10.1007/s11596-015-1505-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-015-1505-3

Key words

Navigation