Skip to main content
Log in

Effect of ovariectomy on serum adiponectin levels and visceral fat in rats

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

This study was aimed to examine the effect of ovariectomy on visceral fat, serum adiponectin levels and lipid profile. Forty-five female Sprague Dawley rats were divided into three groups (n=15 each): ovariectomized group (OVX), ovariectomized plus estrogen-treated group (OVX+E2), and sham-operated group (SHAM). Body weight, abdominal adipose tissues, serum adiponectin and lipid profile were measured and compared among the groups after three-month feeding post-surgery. Significant increases in body weight and visceral fat were found in ovariectomized rats when compared with sham-operated ones and significant increases were also observed in serum adiponectin, triglyceride and very low density lipoprotein cholesterol levels in ovariectomized rats. Body weight, visceral fat and serum adiponectin levels were profoundly reduced in OVX+E2 group as compared with OVX group. It was concluded that ovarian hormone deficiency induced by ovariectomy leads to significant increases in body weight and visceral fat, along with increased serum adiponectin, triglyceride and very low density lipoprotein cholesterol levels in rats. Attenuation in these changes can be achieved by estrogen supplementation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Teede HJ, Lombard C, Deeks AA. Obesity, metabolic complications and the menopause: an opportunity for prevention. Climacteri, 2010, 13(3):203–209

    Article  CAS  Google Scholar 

  2. Tremblay AJ, Despres JP, Piche ME, et al. Associations between the fatty acid content of triglyceride, visceral adipose tissue accumulation, and components of the insulin resistance syndrome. Metabolism, 2004, 53(3):310–317

    Article  CAS  PubMed  Google Scholar 

  3. Gambacciani M, Ciaponi M, Cappagli B, et al. Body weight, body fat distribution, and hormonal replacement therapy in early postmenopausal women. J Clin Endocrinol Metab, 1997, 82(2):414–417

    Article  CAS  PubMed  Google Scholar 

  4. Munoz J, Derstine A, Gower BA. Fat distribution and insulin sensitivity in postmenopausal women: influence of hormone replacement. Obes Res, 2002, 10(6):424–431

    Article  CAS  PubMed  Google Scholar 

  5. Okura T, Koda M, Ando F, et al. Association of polymorphisms in the estrogen receptor alpha gene with body fat distribution. Int J Obes, 2003, 27(9):1020–1027

    Article  CAS  Google Scholar 

  6. Ford ES, Giles WH, Dietz WH. Prevalence of the metabolic syndrome among US adults: findings from the third National Health and Nutrition Examination Survey. JAMA, 2002, 287(3):356–359

    Article  PubMed  Google Scholar 

  7. Hemmat M. Khloussy, Ahmed D, et al. Some potential biological predictors of hypertension in obese male rats. Life Sci J, 2011, 8(4):171–176

    Google Scholar 

  8. Pedersen SB, Kristensen K, Hermann PA, et al. Estrogen controls lipolysis by upregulating alpha2A-adrenergic receptors directly in human adipose tissue through the estrogen receptor alpha. Implications for female fat distribution. J Clin Endocrinol Metab, 2004, 89(4):1869–1878

    Article  CAS  PubMed  Google Scholar 

  9. Mc Innes KJ, Corbould A, Simpson ER, et al. Regulation of adenosine 5’, monophosphate-activated protein kinase and lipogenesis by androgens contributes to visceral obesity in an estrogen-deficient state. Endocrinology, 2006, 147(12):5907–5913

    Article  CAS  Google Scholar 

  10. Scherer PE, Williams S, Fogliano M, et al. A novel serum protein similar to C1q, produced exclusively in adipocytes. J Biol Chem, 1995, 270(45):26746–26749

    Article  CAS  PubMed  Google Scholar 

  11. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun, 1999, 257(1):79–83

    Article  CAS  PubMed  Google Scholar 

  12. Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem, 1996, 271(18):10697–10703

    Article  CAS  PubMed  Google Scholar 

  13. Hotta K, Funahashi T, Bodkin NL, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes, 2001, 50(5):1126–1133

    Article  CAS  PubMed  Google Scholar 

  14. Gavrila A, Chan JL, Yiannakouris N, et al. Serum adiponectin levels are inversely associated with overall and central fat distribution but are not directly regulated by acute fasting or leptin administration in humans: crosssectional and interventional studies. J Clin Endocrinol Metab, 2003, 88(10):4823–4831

    Article  CAS  PubMed  Google Scholar 

  15. Yang WS, Lee WJ, Funahashi T, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab, 2001, 86(8):3815–3819

    Article  CAS  PubMed  Google Scholar 

  16. Maeda K, Okubo K, Shimomura I, et al. cDNA cloning and expression of a novel adipose specific collagen-like factor, apM1 (Adipose Most abundant Gene transcript 1). Biochem Biophys Res Commun, 1996, 221(2):286–289

    Article  CAS  PubMed  Google Scholar 

  17. Misso ML, Jang C, Adams J, et al. Differential expression of factors involved in fat metabolism with age and the menopause transition. Maturitas, 2005, 51(3):299–306

    Article  CAS  PubMed  Google Scholar 

  18. Ainslie DA, Morris MJ, Wittert G, et al. Estrogen deficiency causes central leptin insensitivity and increased hypothalamic neuropeptide Y. Int J Obes, 2001, 25(11): 1680–1688

    Article  CAS  Google Scholar 

  19. Wajchenberg BL. Subcutaneous and visceral adipose tissue: their relation to the metabolic syndrome. Endocr Rev, 2000, 21(6):697–738

    Article  CAS  PubMed  Google Scholar 

  20. Tchernof A, Desmeules A, Richard C, et al. Ovarian hormone status and abdominal visceral adipose tissue metabolism. J Clin Endocrinol Metab, 2004, 89(7):3425–3430

    Article  CAS  PubMed  Google Scholar 

  21. Friedewald WT, Levy RI, Fredrickson DS. Estimation of the concentration of low-density lipoprotein cholesterol in plasma, without use of the preparative ultracentrifuge. Clin Chem, 1972, 18(6):499–502

    CAS  PubMed  Google Scholar 

  22. Milewicz A. Menopausal obesity and metabolic syndrome Pol Senior study. Minerva Endocrinologica, 2012, 37(1): 93–101

    CAS  PubMed  Google Scholar 

  23. Wade GN, Gray JM, Bartness TJ. Gonadal influence in adiposity. Int J Obes Relat Metab Discord, 1985, 9(Suppl 1):83–92

    CAS  Google Scholar 

  24. Choi SB, Jang JS, Park S. Estrogen and exercise may enhance β-cell function and mass via insulin receptor substrate 2 induction in ovariectomized diabetic rats. Endocrinology, 2005, 146(11):4786–4794

    Article  CAS  PubMed  Google Scholar 

  25. Kimble RB, Srivastava S, Ross FP, et al. Estrogen deficiency increases the ability of stromal cells to support murine osteoclastogenesis via an interleukin-1- and tumor necrosis factor-mediated stimulation of macrophage colony stimulating factor production. J Biol Chem, 1996, 271(46):28890–28897

    Article  CAS  PubMed  Google Scholar 

  26. Anbinder AL, Prado MA, Spalding M, et al. Estrogen deficiency and periodontal condition in rats —a radiographic and macroscopic study. Braz Dent J, 2006, 17(3):201–207

    Article  PubMed  Google Scholar 

  27. Poehlman ET. Menopause, energy expenditure, and body composition. Acta Obstetricia et Gynecologica Scandinavica, 2002, 81(7):603–611

    Article  PubMed  Google Scholar 

  28. Mauvais-Jarvis F. Estrogen and androgen receptors: regulators of fuel homeostasis and emerging targets for diabetes and obesity. Trends Endocrinol Metab, 2011, 22(1):24–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Ho SC, Wu S, Chan SG, et al. Menopausal transition and changes of body composition: a prospective study in Chinese perimenopausal women. Int J Obes, 2010, 34(8): 1265–1274

    Article  CAS  Google Scholar 

  30. Turgeon JL, Carr MC, Maki PM, et al. Complex actions of sex steroids in adipose tissue, the cardiovascular system, and brain: insights from basic science and clinical studies. Endocrine Rev, 2006, 27(6):575–605

    Article  CAS  Google Scholar 

  31. Antunes IB, Andersen ML, Alvarenga TAF, et al. Effects of paradoxical sleep deprivation on blood parameters associated with cardiovascular risk in intact and ovariec tomized rats compared with male rats. Behav Brain Res, 2007,176(2):187–192

    Article  CAS  PubMed  Google Scholar 

  32. Meli R, Pacilio M, Raso GM, et al. Estrogen and raloxifene modulate leptin and its receptor in hypothalamus and adipose tissue from ovariectomized rats. Endocrinology, 2004,145(7):3115–3121

    Article  CAS  PubMed  Google Scholar 

  33. Mattsson C, Olsson T. Estrogens and glucocorticoid hormones in adipose tissue metabolism. Curr Med Chem, 2007,14(27):2918–2924

    Article  CAS  PubMed  Google Scholar 

  34. Combs TP, Berg AH, Rajala MW, et al. Sexual differentiation, pregnancy, calorie restriction, and aging affect the adipocyte-specific secretory protein adiponectin. Diabetes, 2003,52(2):268–276

    Article  CAS  PubMed  Google Scholar 

  35. Hu E, Liang P, Spiegelman BM. AdipoQ is a novel adipose-specific gene dysregulated in obesity. J Biol Chem, 1996,271(18):10697–703

    Article  CAS  PubMed  Google Scholar 

  36. Nishizawa H, Shimomura I, Kishida K, et al. Androgens decrease plasma adiponectin, an insulin-sensitizing adipocyte-derived protein. Diabetes, 2002,51(9):2734–2741

    Article  CAS  PubMed  Google Scholar 

  37. Gavrila A, Chan JL, Yiannakouris N, et al. Serum adiponectin levels are inversely associated with overall and central fat distribution but are not directly regulated by acute fasting or leptin administration in humans: crosssectional and interventional studies. J Clin Endocrinol Metab, 2003,88(10):4823–4831

    Article  CAS  PubMed  Google Scholar 

  38. Tanko LB, Bruun JM, Alexandersen P, et al. Novel associations between bioavailable estradiol and adipokines in elderly women with different phenotypes of obesity implications for atherogenesis. Circulation, 2004,110(15):2246–2252

    Article  CAS  PubMed  Google Scholar 

  39. Yamauchi T, Kamon J, Waki H, et al. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat Med, 2001,7(8): 941–946

    Article  CAS  PubMed  Google Scholar 

  40. Arita Y, Kihara S, Ouchi N, et al. Paradoxical decrease of an adipose-specific protein, adiponectin, in obesity. Biochem Biophys Res Commun, 1999,257(1):79–83

    Article  CAS  PubMed  Google Scholar 

  41. Hotta K, Funahashi T, Bodkin NL, et al. Circulating concentrations of the adipocyte protein adiponectin are decreased in parallel with reduced insulin sensitivity during the progression to type 2 diabetes in rhesus monkeys. Diabetes, 2001,50(5):1126–1133.

    Article  CAS  PubMed  Google Scholar 

  42. Yang WS, Lee WJ, Funahashi T, et al. Weight reduction increases plasma levels of an adipose-derived anti-inflammatory protein, adiponectin. J Clin Endocrinol Metab, 2001,86(8):3815–3819

    Article  CAS  PubMed  Google Scholar 

  43. Havel PJ. Control of energy homeostasis and insulin action by adipocyte hormones: leptin, acylation stimulating protein, and adiponectin. Curr Opin Lipidol, 2002,13(1): 51–59

    Article  CAS  PubMed  Google Scholar 

  44. Moorthy K, Yadav UCS, Mantha AK, et al. Estradiol and progesterone treatment change the lipid profile in naturally menopausal rats from different age groups. Biogerontology, 2004,5(6):411–419

    Article  CAS  PubMed  Google Scholar 

  45. Sumino H, Ichikawa S, Yoshida A, et al. Effects of hormone replacement therapy on weight, abdominal fat distribution, and lipid levels in Japanese postmenopausal women. Int J Obes, 2003,27(9):1044–1051

    Article  CAS  Google Scholar 

  46. Laudenslager ML, Wilkinson CW, Carlisle HJ, et al. Energy balance in ovariectomized rats with and without oestrogen replacement. Am J Physiol, 1980,238(5):R400–R405

    CAS  PubMed  Google Scholar 

  47. Subbiah MT. Mechanisms of cardioprotection by estrogens. Proc Soc Exp Biol Med, 1998,217(1):23–29

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian-hong Yang  (杨年红).

Additional information

This work was supported by grants from the National Natural Science Foundation of China (No. 30671765) and Scientific Research Foundation for Returned Overseas Chinese Scholars, Ministry of Education of China (No. 20101561).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camara, C., Zhou, Ly., Ma, Y. et al. Effect of ovariectomy on serum adiponectin levels and visceral fat in rats. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 34, 825–829 (2014). https://doi.org/10.1007/s11596-014-1360-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-014-1360-7

Key words

Navigation