Skip to main content
Log in

MicroRNA-34a regulates high glucose-induced apoptosis in H9c2 cardiomyocytes

  • Published:
Journal of Huazhong University of Science and Technology [Medical Sciences] Aims and scope Submit manuscript

Summary

Hyperglycemia is an important initiator of cardiovascular disease, contributing to the development of cardiomyocyte death and diabetic complications. The purpose of the present study was to investigate whether high glucose state could induce apoptosis of rat cardiomyocyte cell line H9c2 through microRNA-mediated Bcl-2 signaling pathway. The expression of miR-34a and Bcl-2 mRNA was detected by using real-time PCR. Western blotting was used to examine the changes in apoptosis-associated protein Bcl-2. Apoptosis of H9c2 cells was tested by using flow cytometry. The results showed that the expression of miR-34a was significantly elevated and that of Bcl-2 was strongly reduced, and apoptosis of cardiomyocytes was apparently increased in the high-glucose-treated H9c2 cells as compared with normal-glucose-treated controls. In addition, we identified Bcl-2 gene was the target of miR-34a. miR-34a mimics reduced the expression of Bcl-2 and increased glucose-induced apoptosis, but miR-34a inhibitor acted as the opposite mediator. Our data demonstrate that miR-34a contributes to high glucose-induced decreases in Bcl-2 expression and subsequent cardiomyocyte apoptosis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rubler S, Dlugash J, Yuceoglu YZ, et al. New type of cardiomyopathy associated with diabetic glomerulosclerosis. Am J Cardiol, 1972,30(6):595–602

    Article  CAS  PubMed  Google Scholar 

  2. Fein FS. Diabetic cardiomyopathy. Diabetes Care, 1990,13(11):1169–1179

    Article  CAS  PubMed  Google Scholar 

  3. Regan TJ, Ahmed S, Haider B, et al. Diabetic cardiomyopathy: experimental and clinical observations. N J Med, 1994,91(11):776–778

    CAS  PubMed  Google Scholar 

  4. Asbun J, Villarreal FJ. The pathogenesis of myocardial fibrosis in the setting of diabetic cardiomyopathy. J Am Coll Cardiol, 2006,47(4):693–700

    Article  CAS  PubMed  Google Scholar 

  5. Rota M, LeCapitaine N, Hosoda T, et al. Diabetes promotes cardiac stem cell aging and heart failure, which are prevented by deletion of the p66shc gene. Circ Res, 2006,99(1):42–52

    Article  CAS  PubMed  Google Scholar 

  6. Yoon YS, Uchida S, Masuo O, et al. Progressive attenuation of myocardial vascular endothelial growth factor expression is a seminal event in diabetic cardiomyopathy: restoration of microvascular homeostasis and recovery of cardiac function in diabetic cardiomyopathy after replenishment of local vascular endothelial growth factor. Circulation, 2005,111(6):2073–2085

    Article  CAS  PubMed  Google Scholar 

  7. Bartel DP. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell, 2004,116(2):281–297

    Article  CAS  PubMed  Google Scholar 

  8. Rooij EV, Sutherland L, Qi X, et al. Control of stress-dependent cardiac growth and gene expression by a microRNA. Science, 2007,316(5824):575–579

    Article  PubMed  Google Scholar 

  9. Miranda KC, Huynh T, Tay Y, et al. A pattern-based method for the identification of microRNA binding sites and their corresponding heteroduplexes. Cell, 2006,126(6):1203–1217

    Article  CAS  PubMed  Google Scholar 

  10. Rooij EV, Sutherland LB, Liu N, et al. A signature pattern of stress-responsive microRNAs that can evoke cardiac hypertrophy and heart failure. Proc Natl Acad Sci USA, 2006,103(48):18 255–18 260

    Article  Google Scholar 

  11. McKinsey TA, Olson EN. Toward transcriptional therapies for the failing heart: chemical screens to modulate genes. J Clin Invest, 2005,115(3):538–546

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Rooij EV, Olson EN. MicroRNAs: powerful new regulators of heart disease and provocative therapeutic targets. J Clin Invest, 2007,117(9):2369–2376

    Article  PubMed Central  PubMed  Google Scholar 

  13. Kong L, Zhu J, Han W, et al. Significance of serum mi croRNAs in pre-diabetes and newly diagnosed type 2 diabetes: a clinical study. Acta Diabetol, 2011,48(1): 61–69

    Article  CAS  PubMed  Google Scholar 

  14. Bertoni AG, Hundley WG, Massing MW, et al. Heart failure prevalence, incidence, and mortality in the elderly with diabetess. Diabetes Care, 2004,27:699–703

    Article  PubMed  Google Scholar 

  15. Roger VL, Go AS, Lloyd-Jones DM, et al. Heart disease and stroke statistics-2012 update: a report from the American Heart Association. Circulation, 2012,125(1): e2–220

    Article  PubMed  Google Scholar 

  16. He L, He X, Lim LP, et al. A microRNA component of the p53 tumour suppressor network. Nature, 200,447(7148):1130–1134

  17. Dostie J, Mourelatos Z, Yang M, et al. Numerous microRNPs in neuronal cells containing novel microRNAs. RNA, 2003,9(2):180–186

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Lagos-Quintana M, Rauhut R, Yalcin A, et al. Identification of tissue-specific microRNAs from mouse. Curr Biol, 2002,12(9):9

    Article  Google Scholar 

  19. Ito T, Yagi S, Yamakuchi M. MicroRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun, 2010,398(4):735–740

    Article  CAS  PubMed  Google Scholar 

  20. Ermeking H. The miR-34 family in cancer and apoptosis. Cell Death Differ, 2010,17(2):193–199

    Article  Google Scholar 

  21. Cole KA, Attiyeh EF, Mosse YP, et al. A functional screen identifies miR-34a as a candidate neuroblastoma tumor suppressor gene. Mol Cancer Res, 2008,6(5): 735–742

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Lovis P, Roggli E, Laybutt DR, et al. Alterations in microRNA expression contribute to fatty acid-induced pancreatic beta-cell dysfunction. Diabetes, 2008,57(10): 2728–2736

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Baek D, Villén J, Shin C, et al. The impact of microRNAs on protein output. Nature, 2008,455(7209):64–71

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Williams AH, Liu N, Van ER, et al. MicroRNA control of muscle development and disease. Curr Opin Cell Biol, 2009,21(3):461–469

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  25. Cimmino A, Calin GA, Fabbri M, et al. miR-15 and miR-16 induce apoptosis by targeting BCL2. Proc Natl Acad Sci USA, 2005,102(39):13 944–13 949

    Article  CAS  Google Scholar 

  26. Katare R, Caporali A, Zentilin L, et al. Intravenous gene therapy with PIM-1 via a cardiotropic viral vector halts the progression of diabetic cardiomyopathy through promotion of prosurvival signaling. Circ Res, 2011,108(10): 1238–1251

    Article  CAS  PubMed  Google Scholar 

  27. Reed JC, Meister L, Tanaka S, et al. Differential expression of bcl2 protooncogene in neuroblastoma and other human tumor cell lines of neural origin. Cancer Res, 1991,51(24):6529–6538

    CAS  PubMed  Google Scholar 

  28. Bommer GT, Gerin I, Feng Y, et al. p53-mediated activation of miRNA34 candidate tumor-suppressor genes. Curr Biol, 2007,17(15):1298–1307

    Article  CAS  PubMed  Google Scholar 

  29. Chang TC, Wentzel EA, Kent OA, et al. Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cel, 2007,26(5):745–752

    Article  CAS  Google Scholar 

  30. Yamakuchi M, Lowenstein CJ. MiR-34, SIRT1 and p53: the feedback loop. Cell Cycle, 2009,8(5):712–715

    Article  CAS  PubMed  Google Scholar 

  31. Welch C, Chen Y, Stallings RL. MicroRNA-34a functions as a potential tumor suppressor by inducing apoptosis in neuroblastoma cells. Oncogene, 2007,26(34): 5017–5022

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fang Zhao  (赵 芳).

Additional information

This project was supported by grants from Hubei Natural Science Foundation of China (No. 2012FFB04307), Wuhan University Independent Research Projects Foundation (No. 303274034), Zhongnan Hospital of Wuhan University Hospital Foundation (No.201103), and National Natural Science Foundation of China (No. 390971103).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zhao, F., Li, B., Wei, Yz. et al. MicroRNA-34a regulates high glucose-induced apoptosis in H9c2 cardiomyocytes. J. Huazhong Univ. Sci. Technol. [Med. Sci.] 33, 834–839 (2013). https://doi.org/10.1007/s11596-013-1207-7

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11596-013-1207-7

Key words

Navigation