Skip to main content
Log in

Effects of Polypropylene Fibers on the Physical and Mechanical Properties of Recycled Aggregate Concrete

  • Cementitious material
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The viability of using polypropylene fibers (PPF) in concrete was largely studied. Yet, few of the existing research studies investigated the effects of PPF on the properties of concrete containing recycled concrete aggregate (RCA). Mixes with different RCA replacement ratios and different PPF content were designed and tested. The test results showed that the addition of PPF did not change significantly the compressive strength and the density of the concrete, but slightly decreased its modulus of elasticity and Poisson’s ratio. The drop in the splitting tensile strength and the flexural strength due to RCA inclusions was to a large extent compensated by the PPF addition. The water absorption decreased and the percent voids increased with increased PPF addition. Correlations between the RCA content, the PPF content and the properties of concrete were studied. Useful regression models were proposed to predict the properties of concrete in relevant ranges of RCA and PPF content.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Tüfekci MM, Cakır Ö. An Investigation on Mechanical and Physical Properties of Recycled Coarse Aggregate (RCA) Concrete With GGBFS[J]. Int. J. Civ. Eng., 2017, 15(4): 549–563

    Article  Google Scholar 

  2. Limbachiya MC. Performance of Recycled Concrete Aggregate[C]. In: Kashino N, Ohama Y (Eds.), RILEM International Symposium on Environmental-Conscious Materials and Systems for Sustainable Development (ECM 2004), Koriyama, Japan, 2004: 127–136

    Google Scholar 

  3. Topcu IB, Sengel S. Properties of Concrete Produced With Waste Concrete Aggregate[J]. Cem.Concr. Res., 2004, 34(8): 1 307–1 312

    Article  CAS  Google Scholar 

  4. Xiao J, Li J, Zhang Ch. Mechanical Properties of Recycled Aggregate Concrete Under Uniaxial Loading[J]. Cem. Concr. Res., 2005, 35(6): 1 187–1 194

    Article  CAS  Google Scholar 

  5. Eguchi K, Teranishi K, Nakagome A, et al. Application of Recycled Coarse Aggregate by Mixture to Concrete Construction[J]. Constr. Build. Mater., 2007, 21: 1 542–1 551

    Article  Google Scholar 

  6. Rahal K. Mechanical Properties of Concrete With Recycled Coarse Aggregate[J]. Build.Environ., 2007, 42: 407–415

    Article  Google Scholar 

  7. Kamal MM, Safan MA, Etman ZA, et al. Effect of Steel Fibers on the Properties of Recycled Self-Compacting Concrete in Fresh and Hardened State[J]. Int. J. Civ. Eng., 2015, 13(4): 400–410

    Google Scholar 

  8. Corinaldesi V. Mechanical and Elastic Behaviour of Concretes Made of Recycled-Concrete Coarse Aggregates[J]. Constr. Build. Mater., 2010, 24: 1 616–1 620

    Article  Google Scholar 

  9. Choi Y, Yuan RL. Experimental Relationship Between Splitting Tensile Strength and Compressive Strength of GFRC and PFRC[J]. Cem. and- Concr. Res., 2005, 35(8): 1 587–1 591

    Article  CAS  Google Scholar 

  10. Evangelista L, de Brito J. Mechanical Behaviour of Concrete Made With Fine Recycled Concrete Aggregates[J]. Cem. Concr. Compos., 2007, 29: 397–401

    Article  CAS  Google Scholar 

  11. Thomas C, Setién J, Polanco JA, Alaejos P, Sánchez de Juan M. Durability of Recycled Aggregate Concrete[J]. Constr. Build. Mater., 2013, 40: 1 054–1 065

    Article  Google Scholar 

  12. Matias D, de Brito J, Rosa A, Pedro D. Durability of Concrete With Recycled Coarse Aggregates: Influence Of Superplasticizers[J]. J. Mater. Civ. Eng., 2014, 26(7): 06014011

    Google Scholar 

  13. Akça KR, Çakır Ö, İpek M. Properties of Polypropylene Fiber Reinforced Concrete Using Recycled Aggregates[J]. Constr. Build. Mater., 2015, 98: 620–630

    Article  Google Scholar 

  14. Ajdukiewicz A, Kliszczewicz A. Influence of Recycled Aggregates on Mechanical Properties of HS/HPC[J]. Cem. Concr. Compos., 2002, 24: 269–279

    Article  CAS  Google Scholar 

  15. Choi WC, Yun HD, Kim SW. Flexural Performance of Reinforced Recycled Aggregate Concrete Beams[J]. Mag. Concr. Res., 2012, 64(9): 837–848

    Article  Google Scholar 

  16. Li WN, Zhan DH, Xu JJ, et al. Test Research on Elastic Modulus and Poisson’s Ratios of Long Age Recycled Aggregate Concrete[J]. Appl. Mech. Mater., 2012, 174-177: 1 051–1 055

    Article  Google Scholar 

  17. Ashour SA, Hasanain GS, Wafa FF. Shear Behaviour of High-Strength Fiber Reinforced Concrete Beams[J]. ACI Struct. J., 1992, 89(2): 176–185

    Google Scholar 

  18. Bayasi Z, Zeng J. Properties of Polypropylene Fiber Reinforced Concrete[J]. ACI Mater. J., 1993, 90(6): 605–610

    CAS  Google Scholar 

  19. Kayali O, Haque M, Zhu B. Some Characteristics of High Strength Fiber Reinforced Lightweight Aggregate Concrete[J]. Cem. Concr. Compos., 2003, 25: 207–213

    Article  CAS  Google Scholar 

  20. Zhang L, Wang XX, Zheng G. Effect of Polypropylene Fibers on the Strength and Elastic Modulus of Soil-Cement[C]. In:4th Asian Regional Conference on Geosynthetics (Geosynthetics Asia 2008), Shanghai, China, 2008: 386–391

    Google Scholar 

  21. Bagherzadeh R, Sadeghi AH, Latifi M. Utilizing Polypropylene Fibers to Improve Physical and Mechanical Properties of Concrete[J]. Text. Res. J., 2012, 82(1): 88–96

    Article  CAS  Google Scholar 

  22. Bjegović D, Serdar M, Oslaković I.S, et al. Test Methods for Concrete Durability Indicators[C]. In:Beushausen H, Fernandez LL (Eds.), Performance- Based Specifications and Control of Concrete Durability - State-of-the-Art Report, RILEM TC 230-PSC, Springer, Netherlands, 2016: 51–105

    Chapter  Google Scholar 

  23. Mohod MV. Performance of Polypropylene Fibre Reinforced Concrete[J]. IOSR J. Mech. Civ. Eng., 2015, 12(1): 28–36

    Google Scholar 

  24. Alsadey S, Salem M. Influence of Polypropylene Fiber on Strength of Concrete[J]. Am. J. Eng. Res., 2016, 5(7): 223–226

    Google Scholar 

  25. RILEM Technical Committee TC 162-TDF: Test and Design Methods for Steel Fibre Reinforced Concrete. Design of Steel Fibre Reinforced Concrete Using the σ-w Method: Principles and Applications[J].Mater. Struct., 2002, 35(5): 262–278

    Article  Google Scholar 

  26. Li BX, Chen MX, Cheng F, et al. The Mechanical Properties of Polypropylene Fiber Reinforced Concrete[J]. J. Wuhan Univ. Technol.- Mater. Sci. Ed., 2004, 19: 68–71

    Article  Google Scholar 

  27. Yang J, Du Q, Bao Y. Concrete With Recycled Concrete Aggregate and Crushed Clay Bricks[J]. Constr. Build. Mater., 2011, 25(4): 1935–1945

    Article  Google Scholar 

  28. Etxeberria M., Marí AR., Vázquez E. Recycled Aggregate Concrete as Structural Material[J]. Mater.Struct., 2007, 40: 529–541

    Article  Google Scholar 

  29. González-Fonteboa B, Martínez-Abella F. Shear Strength of Recycled Concrete Beams[J]. Constr. Build. Mater., 2007, 21: 887–893

    Article  Google Scholar 

  30. deBrito J, Ferreira J, Pacheco J, et al. Structural, Material, Mechanical and Durability Properties and Behaviour of Recycled Aggregates Concrete[J]. J. Build. Eng., 2016, 6: 1–16

    Article  Google Scholar 

  31. Huda SB, Alam MS. Mechanical and Freeze-Thaw Durability Properties of Recycled Aggregate Concrete Made With Recycled Coarse Aggregate[J]. J. Mater. Civ. Eng., 2015, 27(10): 04015003

    Article  CAS  Google Scholar 

  32. Kurtz S, Balaguru P. Postcrack Creep of Polymeric Fiber-Reinforced Concrete in Flexure[J]. Cem. andConcr. Res., 2000, 30(2): 183–190

    Article  CAS  Google Scholar 

  33. Deng Z, Li J. Mechanical Behaviors of Concrete Combined with Steel and Synthetic Macro-Fibers[J]. Int. J. Phys. Sci., 2006, 1(2): 057–066

    Google Scholar 

  34. Maier C, Calafut T. Polypropylene: The Definitive User’s Guide and Databook[M]. Plastics Design Library, Norwich, New York, 1998: 432

    Google Scholar 

  35. Wang Y, Backer S, Li VL. An Experimental Study of Synthetic Fibre Reinforced Cementitious Composites[J]. J. Mater. Sci., 1987, 22(12),: 4 281–4 291

    Article  CAS  Google Scholar 

  36. Zhang P, Li QF. Effect of Polypropylene Fiber on Durability of Concrete Composite Containing Fly Ash and Silica Fume[J]. Compos. Part B: Eng., 2013, 45: 1 587–1 594

    Article  CAS  Google Scholar 

  37. Sedran T, deLarrard F. Optimization of Self-Compacting Concrete Thanks to Packing Model[C]. In:Skarendahl Å., Petersson Ö. (Eds.), 1st International RILEM Symposium on Self-Compacting Concrete, Stockholm, Sweden, 1999: 321–332

    Google Scholar 

  38. ACI Committee 211. ACI 211.1-91: Standard Practice for Selecting Proportions for Normal, Heavyweight, and Mass Concrete (Reapproved 2009)[S]. American Concrete Institute, 2002: 38

    Google Scholar 

  39. Ferreira L, de Brito J, Barra M. Influence of the Pre-saturation of Recycled Coarse Concrete Aggregates Properties[J]. Mag. Concr. Res., 2011, 63(8): 617–627

    Article  CAS  Google Scholar 

  40. Singh H. Steel Fiber Reinforced Concrete: Behavior, Modelling and Design[M]. Springer, Singapore, 2016: 172

    Google Scholar 

  41. Rocco C, Guinea GV, Planas J, et al. Size Effect and Boundary Conditions in the Brazilian Test: Experimental Verification[J]. Mater. Struct., 1999, 32: 210

    Article  Google Scholar 

  42. Paegle I, Fischer G. Evaluation of Test Methods Used to Characterize Fiber Reinforced Cementitious Composites[C]. In: International Conference on Innovative Materials, Structures and Technologies, Riga, Latvia, 8 November 2013: 122–128

    Google Scholar 

  43. Otsuki N, Miyazato SI, Yodsudjai W. Influence of Recycled Aggregate on Interfacial Transition Zone, Strength, Chloride Penetration and Carbonation of Concrete[J]. J. Mater. Civ. Eng., 2003, 15(5): 443–451

    Article  CAS  Google Scholar 

  44. Katz A. Properties of Concrete Made With Recycled Aggregate From Partially Hydrated Old Concrete[J]. Cem. and Concr. Res., 2003, 33(5): 703–711

    Article  CAS  Google Scholar 

  45. Silva RV, de Brito J, Dhir RK. Tensile Strength Behaviour of Recycled Aggregate Concrete[J]. Constr. Build. Mater., 2015, 83: 108–118

    Article  Google Scholar 

  46. Gonçalves A, Coutinho AS. Concrete Fabrication and Properties[M]. 3. National Laboratory of Civil Engineering, Lisbon, 1994: 384[in Portuguese]

    Google Scholar 

  47. Fonseca N, de Brito J, Evangelista L. The Influence of Curing Conditions on the Mechanical Performance of Concrete Made With Recycled Concrete Waste[J]. Cem. Concr. Compos., 2011, 33(6): 637–643

    Article  CAS  Google Scholar 

  48. Etxeberria M, Vázquez E, Marí A, et al. Influence of Amount of Recycled Coarse Aggregates and Production Process on Properties of Recycled Aggregate Concrete[J]. Cem.Concr. Res., 2007, 37(5): 735–742

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This research project has been funded by the National Council for Scientific Research in Lebanon (CNRS - Lebanon).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pierre Matar.

Additional information

Conflicts of interest

The authors states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Matar, P., Zéhil, GP. Effects of Polypropylene Fibers on the Physical and Mechanical Properties of Recycled Aggregate Concrete. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 34, 1327–1344 (2019). https://doi.org/10.1007/s11595-019-2196-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-019-2196-6

Key words

Navigation