Skip to main content
Log in

Effective microstructure unit in control of impact toughness in CGHAZ for high strength bridge steel

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

The high strength bridge steel was processed with the simulated coarse grain heat affected zone (CGHAZ) thermal cycle with heat input varying from 30 to 60 kJ/cm, the microstructures were investigated by means of optical microscope (OM), scanning electron microscope (SEM), electron backscattering diffraction (EBSD) and transmission electron microscope (TEM), and the impact properties were evaluated from the welding thermal cycle treated samples. The results indicate that the microstructure is primarily composed of lath bainite. With decreasing heat input, both bainite packet and block are significantly refined, and the toughness has an increasing tendency due to the grain refinement. The fracture surfaces all present cleavage or fracture for the samples with different heat inputs. Moreover, the average cleavage facet size for the CGHAZ is nearly equal to the average bainite packet size and the bainitic packet boundary can strongly impede the crack propagation, indicating that the bainitic packet is the most effective unit in control of impact toughness in the simulated CGHAZ of high strength bridge steel.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Shin SY, Hwang B, Lee S, et al. Correlation of Microstructure and Charpy Impact Properties in API X70 and X80 Line-pipe Steels[J]. Mater. Sci. Eng. A, 2007, 458: 281–289

    Article  Google Scholar 

  2. Zhao W, Wang W, Chen S, et al. Effect of Simulated Welding Thermal Cycle on Microstructure and Mechanical Properties of High Strength Bridge Steel[J]. Mater. Sci. Eng A, 2011, 528(5): 7417–7422

    Article  Google Scholar 

  3. Davis CL, King JE. Cleavage Initiation in the Intercritically Reheated Coarse-grained Heat-affected Zone: Part I. Fractographic Evidence[J]. Metall. Mater. Trans. A, 1994, 25(7): 563–73

    Article  Google Scholar 

  4. Hu J, Du L-X, Wang J-J, et al. Effect of Welding Heat Input on Microstructures and Toughness in Simulated CGHAZ of V-N High Strength Steel[J]. Mater. Sci. Eng. A, 2013, 577(6): 161–168

    Article  Google Scholar 

  5. Wei R, Wu KM, Gao Z. Effect of Heat Input on Impact Toughness of Coarse-Grained Heat-Affected Zone of a Nb-Ti Microalloyed Bridge Steel[J]. Adv. Mater. Res., 2012,538(5): 2026–2031

    Google Scholar 

  6. Li R, Zuo X, Hu Y, et al. Microstructure and Properties of Bridge Steel with a Ferrite/Martensite Dual-phase Microstructure[J]. Mater. Charact, 2011, 62(5): 801–806

    Article  Google Scholar 

  7. Lambert-Perlade A, Gourgues AF, Pineau A. Austenite to Bainite Phase Transformation in the Heat-affected Zone of a High Strength Low Alloy Steel[J]. Acta Mater., 2004, 52(7): 2337–2348

    Article  Google Scholar 

  8. Guo A, Misra RDK, Liu J, et al. An Analysis of the Microstructure of the Heat-affected Zone of an Ultra-low Carbon and Niobium-bearing Acicular Ferrite Steel Using EBSD and Its Relationship to Mechanical Properties[J]. Mater. Sci. Eng. A, 2010,527(3): 6440–6448

    Article  Google Scholar 

  9. You Y, Shang C, Chen L, et al. Investigation on the Crystallography of the Transformation Products of Reverted Austenite in Intercritically Reheated Coarse Grained heat Affected Zone[J]. Mater. Des., 2013, 43(9): 485–491

    Article  Google Scholar 

  10. Sung HK, Shin SY, Cha W, et al. Effects of Acicular Ferrite on Charpy Impact Properties in Heat Affected Zones of Oxide-containing API X80 Linepipe Steels[J]. Mater. Sci. Eng. A, 2011,528(21): 3350–3357

    Article  Google Scholar 

  11. Morito S, Tanaka H, Konishi R, et al. The Morphology and Crystallography of Lath Martensite in Fe-C Alloys[J]. Acta. Mater., 2003, 51(9): 1789–1799

    Article  Google Scholar 

  12. Morito S, Saito H, Ogawa T, et al. Effect of Austenite Grain Size on the Morphology and Crystallography of Lath Martensite in Low Carbon Steels[J]. ISIJ Int., 2005, (8)45: 91–94

    Article  Google Scholar 

  13. Wang C, Wang M, Shi J, et al. Effect of Microstructural Refinement on the Toughness of Low Carbon Martensitic Steel[J]. Scripta. Mater., 2008, 58: 492–495

    Article  Google Scholar 

  14. Lee S, Kim BC, Lee DY. Fracture Mechanism in Coarse Grained HAZ of HSLA Steel Welds[J]. Scr. Metall., 1989, 23(10): 995–1000

    Article  Google Scholar 

  15. Kim YM, Kim SK, Lim YJ, et al. Effect of Microstructure on the Yield Ratio and Low Temperature Toughness of Linepipe Steels[J]. ISIJ Int., 2002, 42(7): 1571–1577

    Article  Google Scholar 

  16. Rancel L, Gómez M, Medina SF, et al. Measurement of Bainite Packet Size and Its Influence on Cleavage Fracture in a Medium Carbon Bainitic Steel[J]. Mater. Sci. Eng. A,2011,530(9): 21–27

    Article  Google Scholar 

  17. Zhang C, Wang Q, Ren J, et al. Effect of Martensitic Morphology on Mechanical Properties of an As-quenched and Tempered 25CrMo48V Steel[J]. Mater. Sci. Eng. A, 2012,534(6): 339–346

    Article  Google Scholar 

  18. Yang Y, Shang C, Wenjin N, et al. Investigation on the Microstructure and Toughness of Coarse Grained Heat Affected Zone in X-100 Multiphase Bridge Steel with High Nb Content[J]. Mater. Sci. Eng. A, 2012, 558(5): 692–701

    Google Scholar 

  19. Shanmugam S, Ramisetti NK, Misra RDK, et al. Microstructure and High Strength–toughness Combination of a New 700 MPa Nb-microalloyed Bridge Steel[J]. Mater. Sci. Eng. A, 2008,478: 26–37

    Article  Google Scholar 

  20. Zhao M-C, Yang K, Xiao F-R, et al. Continuous Cooling Transformation of Undeformed and Deformed Low Carbon Bridge Steels[J]. Mater. Sci. Eng. A, 2003, 355: 126–136

    Article  Google Scholar 

  21. Wang S-C, Yang J-R. Effects of Chemical Composition, Rolling and Cooling Conditions on the Amount of Martensite/austenite (M/A) Constituent Formation in Low Carbon Bainitic Steels[J]. Mater. Sci. Eng. A, 1992, 154(3): 43–49

    Article  Google Scholar 

  22. Yakubtsov IA, Poruks P, Boyd JD. Microstructure and Mechanical Properties of Bainitic Low Carbon High Strength Plate Steels[J]. Mater. Sci. Eng. A, 2008, 480: 109–116

    Article  Google Scholar 

  23. Furuhara T, Kawata H, Morito S, et al. Crystallography of Upper Bainite in Fe–Ni–C Alloys[J]. Mater. Sci. Eng. A, 2006, 431(7): 228–236

    Article  Google Scholar 

  24. Qiao GY, Han Y and Han XL. Microstructure and Mechanical Properties of Welding Heat Affected Zone of High-Nb High Strength Pipeline Steel[J]. Journal of Iron and Steel Research, 2014, 26(10): 40–45

    Google Scholar 

  25. Olasolo M, Uranga P, Rodriguez-Ibabe JM, et al. Effect of Austenite Microstructure and Cooling Rate on Transformation Characteristics in a Low Carbon Nb-V Microalloyed Steel[J]. Mater. Sci. Eng. A, 2011, 528: 2559–2569

    Article  Google Scholar 

  26. Naylor JP, Krahe PR. Cleavage Planes in Lath Type Bainite and Martensite[J]. Metall Trans. A, 1975,(2)6: 594–598

    Article  Google Scholar 

  27. Lan L, Qiu C, Zhao D, et al. Microstructural Characteristics and Toughness of the Simulated Coarse Grained Heat Affected Zone of High Strength Low Carbon Bainitic Steel[J]. Mater. Sci. Eng. A, 2011, 529(2): 192–200

    Article  Google Scholar 

  28. Yang X Zh, Zhang L, Shi Y Sh, et al. Effect of Niobium Addition on Hot Deformation Behaviors of Medium Carbon Ultra-high Strength Steels[J]. Journal of Wuhan University of Technology-Mater. Sci Ed., 2017, 32(1): 1–28

    Article  Google Scholar 

  29. Daigne J, Guttmann M, Naylor JP. The Influence of Lath Boundaries and Carbide Distribution on the Yield Strength of 0.4% C Tempered Martensitic Steels[J]. Mater. Sci. Eng., 1982, 56: 1–10

    Article  Google Scholar 

  30. Yang L Q, Sui Y l, Xia P P, et al. Microstructure and Toughness of Weld CGHAZ under Different Heat Input for X90 High Strength Pipeline Steel[C]. Proceedings of the 2016 11th International Pipeline Conference., IPC2016

Download references

Acknowledgments

Thanks for the supporting tests of State Key Laboratory of Material Processing and Die & Mould Technology and Analysis and Test Center in Huazhong University of Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lichao Zhang  (张李超) or Yusheng Shi  (史玉升).

Additional information

Supported by the National 863 Program of China (No.2015AA042505), State Key Laboratory of Materials Processing and Die & Mould Technology of Huazhong University of Science and Technology (No.P2018-014), Major Science and Technology Project in Guangdong Province (No.2014B010130001)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Zhang, L., Shi, Y. et al. Effective microstructure unit in control of impact toughness in CGHAZ for high strength bridge steel. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 177–184 (2018). https://doi.org/10.1007/s11595-018-1803-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1803-2

Keywords

Navigation