Skip to main content
Log in

Analysis of mechanical characteristics of fly ash cenospheres reinforced epoxy composites

  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Fly ash cenospheres (FACs) as a recycling material of industrial waste has become a competitor for other inorganic particle fillers. Epoxy resin (EP) composites reinforced with different content of FACs as well as different size grading ratio were prepared. The surface modification of FACs particles was conducted before incorporating into EP matrix. The impact and flexural strengths and the flexural modulus were investigated, and the fracture surfaces of the testing samples were analyzed using SEM. Results showed that FACs had an obvious effect on the mechanical characteristics of the FACs/EP composites. With increasing weight fraction of FACs, the impact and flexural strengths and the flexural modulus of EP composite samples increased, and reached the highest values when the weight fraction of FACs reached 15 wt%. The mechanical characteristics of the FACs/EP composites however deteriorated with further increasing of FACs content. For the EP composites reinforced with different size grading ratio of FACs, the larger proportion of small FACs particles, the better mechanical properties of the EP composites. The results were analyzed from the aspect of the plastic deformation, new surface formation and fracture absorption energy. The synergistic effect of the size grading ratio of FACs was not obvious, which would be further investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. He H W, Li K X, Wang J, et al. Study on Thermal and Mechanical Properties of Nano-calcium Carbonate/epoxy Composites[J]. Mater. Des., 2011, 32: 4521–4527

    Article  Google Scholar 

  2. Sun T, Fan H Y, Wang Z, et al. Modified Nano Fe2O3-epoxy Composite with Enhanced Mechanical Properties[J]. Mater. Des., 2015, 87: 10–16

    Article  Google Scholar 

  3. Sharmila T K B, Antony J V, Jayakrishnan M P, et al. Mechanical, Thermal and Dielectric Properties of Hybrid Composites of Epoxy and Reduced Graphene Oxide/iron Oxide[J]. Mater. Des., 2016, 90: 66–75

    Article  Google Scholar 

  4. Kang Y K, Chen X H, Song S Y, et al. Friction and Wear Behavior of Nanosilica-filled Epoxy Resin Composite Coatings[J]. Appl. Surf. Sci., 2012, 258: 6384–6390

    Article  Google Scholar 

  5. Zhou H L, Liu H Y, Zhou H M, et al. On Adhesive Properties of Nano-silica/epoxy Bonded Single-lap Joints[J]. Mater. Des., 2016, 95: 212–218

    Article  Google Scholar 

  6. Wang F Z, Drzal L T, Qin Y, et al. Enhancement of Fracture Toughness, Mechanical and Thermal Properties of Rubber/epoxy Composites by Incorporation of Graphene Nanoplatelets[J]. Compos. Part A, 2016, 87: 10–22

    Article  Google Scholar 

  7. Sprenger S. Epoxy Resins Modified with Elastomers and Surface-modified Silica Nanoparticles[J]. Polymer, 2013, 54: 4790–4797

    Article  Google Scholar 

  8. Beylergil B, Tanoglu M, Aktas E. Enhancement of Interlaminar Fracture Toughness of Carbon Fiber-epoxy Composites Using Polyamide-6,6 Electrospun Nanofibers[J]. J. Appl. Polym. Sci., 2017, 134: 45244–45255

    Article  Google Scholar 

  9. Liu S L, Fan X S, He C B. Improving the Fracture Toughness of Epoxy with Nanosilica-rubber Core-shell Nanoparticles[J]. Compos. Sci. Technol., 2016, 125: 132–140

    Article  Google Scholar 

  10. Kim H S, Khamis M A. Fracture and Impact Behaviours of Hollow Micro-sphere/epoxy Resin Composites[J]. Compos. Part A, 2001, 32: 1311–1317

    Article  Google Scholar 

  11. Conradi M, Zorko M, Kocijan A, et al. Mechanical Properties of Epoxy Composites Reinforced with a Low Volume Fraction of Nanosilica Fillers[J]. Mater. Chem. Phys., 2013,137: 910–915

    Article  Google Scholar 

  12. Swetha C, Kumar R. Quasi-static Uni-axial Compression Behaviour of Hollow Glass microspheres/epoxy Based Syntactic Foams[J]. Mater. Des., 2011, 32: 4152–4163

    Article  Google Scholar 

  13. Wang L J, Yang X, Zhang J, et al. The Compressive Properties of Expandable Microspheres/epoxy Foams[J]. Compos. Part B, 2014, 56: 724–732

    Article  Google Scholar 

  14. Woldesenbet E. Low Velocity Impact Properties of Nanoparticulate Syntactic Foams[J]. Mater. Sci. Eng. A, 2008, 496: 217–222

    Article  Google Scholar 

  15. Kolay P K, Bhusal S. Recovery of Hollow Spherical Particles with Two Different Densities from Coal Fly Ash and Their Characterization[J]. Fuel, 2014, 117: 118–124

    Article  Google Scholar 

  16. Acar I, Atalay M U. Recovery Potentials of Cenospheres from Bituminous Coal Fly Ashes[J]. Fuel, 2016, 180: 97–105

    Article  Google Scholar 

  17. Wang C F, Liu J C, Du H Y, et al. Effect of Fly Ash Cenospheres on the Microstructure and Properties of Silica-based Composites[J]. Ceram. Int., 2012, 38: 4395–4440

    Article  Google Scholar 

  18. Gu J, Wu G H, Zhang Q. Effect of Porosity on the Damping Properties of Modified Epoxy Composites Filled with Fly Ash[J]. Scripta Mater., 2007, 57: 529–532

    Article  Google Scholar 

  19. Zyrkowski M, Neto R C, Santos L F, et al. Characterization of Fly-ash Cenospheres from Coal-fired Power Plant Unit[J]. Fuel, 2016, 174: 49–53

    Article  Google Scholar 

  20. Li Q, Pang J F, Wang B, et al. Preparation, Characterization and Microwave Absorption Properties of Barium-ferrite-coated Fly-ash Cenospheres[J]. Adv. Powder Technol., 2013, 24: 288–294

    Article  Google Scholar 

  21. Liu S M, Zhu J L, Guo X T, et al. Preparation of a-Fe2O3–TiO2/Fly Ash Cenospheres Photocatalyst and Its Mechanism of Photocatalytic Degradation[J]. Colloid Surf. A-Physicochem. Eng. Asp., 2015, 484: 434–440

    Article  Google Scholar 

  22. Sharma J, Chand N, Bapat M N. Effect of Cenosphere on Dielectric Properties of Low Density Polyethylene[J]. Results in Physics., 2012, 2: 26–33

    Article  Google Scholar 

  23. Deepthi M V, Sharma M, Sailaja R R N, et al. Mechanical and Thermal Characteristics of High Density Polyethylene-fly Ash Cenospheres Composites[J]. Mater. Des., 2010, 31: 2051–2060

    Article  Google Scholar 

  24. Labella M, Zeltmann S E, Shunmugasamy V C, et al. Mechanical and Thermal Properties of Fly ash/vinyl Ester Syntactic Foams[J]. Fuel, 2014, 121: 240–249

    Article  Google Scholar 

  25. Kumar B R B, Doddamani M, Zeltmann S E, et al. Processing of Cenosphere/HDPE Syntactic Foams Using an Industrial Scale Polymer Injection Molding Machine[J]. Mater. Des., 2016, 92: 414–423

    Article  Google Scholar 

  26. Das A, Satapathy B K. Structural, Thermal. Mechanical and Dynamic Mechanical Properties of Cenosphere Filled Polypropylene Composites[J]. Mater. Des., 2011, 32: 1477–1484

    Google Scholar 

  27. Manakari V, Parande G, Doddamani M, et al. Dry Sliding Wear of Epoxy/ cenosphere Syntactic Foams[J]. Tribol. Int., 2015, 92: 425–438

    Article  Google Scholar 

  28. Srivastava V K, Pawar A G. Solid Particle Erosion of Glass Fibre Reinforced Fly Ash Filled Epoxy Resin Composites[J]. Compos. Sci. Technol., 2006, 66: 3021–3028

    Article  Google Scholar 

  29. Zhang L Y, Ma J. Effect of Coupling Agent on Mechanical Properties of Hollow Carbon Microsphere/phenolic Resin Syntactic Foam[J]. Compos. Sci. Technol., 2010, 70: 1265–1271

    Article  Google Scholar 

  30. Yang R, Liu Y J, Wang K H, et al. Characterization of Surface Interaction of Inorganic Fillers with Silane Coupling Agents[J]. J. Anal. Appl. Pyrolysis., 2003, 70: 413–425

    Article  Google Scholar 

  31. Derradji M, Ramdani N, Zhang T, et al. Mechanical and Thermal Properties of Phthalonitrile Resin Reinforced with Silicon Carbide Particles[J]. Mater. Des., 2015, 71: 48–55

    Article  Google Scholar 

  32. Chen P, Ma F, Mei H F, et al. Erosive Wear Characteristics of High-alumina Cenospheres Filled Epoxy Resin Composites[J]. J. University of Sci. Technol. Beijing, 2014, 36(2): 218–225

    Google Scholar 

  33. Wang X, Wang L, Su Q, et al. Use of Unmodified SiO2 as Nanofiller to Improve Mechanical Properties of Polymer-based Nanocomposites[J]. Compos. Sci. Technol., 2013, 89: 52–60

    Article  Google Scholar 

  34. Baheti V, Militky J, Mishra R, et al. Thermomechanical Properties of Glass Fabric/epoxy Composites Filled with Fly Ash[J]. Compos. Part B, 2016, 85: 268–276

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ping Chen  (陈平).

Additional information

Funded by the National Natural Science Foundation of China (No.51305023) and the Fundamental Research Funds for the Central Universities of China (No.FRF-GF-17-B20)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, P., Li, J. & Zhang, L. Analysis of mechanical characteristics of fly ash cenospheres reinforced epoxy composites. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 33, 139–145 (2018). https://doi.org/10.1007/s11595-018-1798-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-018-1798-8

Keywords

Navigation