Skip to main content
Log in

Ab initio study of doping mechanisms in BaTiO3-BiYO3

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

A density functional plane-wave pseudopotential method is used to study the doping mechanisms of impurity defects(BiBa, YTi) in BaTiO3-BiYO3. Single BiBa and YTi impurities have little structure distortion. Bi forms ionic bond with nearby O atom in single Bi impurity, Y formed [YO6] octahedral in single Y impurity. However, in the co-doped BiBa and YTi structure, Bi formed three valence bonds with nearby O atom, which causes the large structure distortion. The doped ion makes the mobile of Ti4+ difficult and loss local ferroelectricity, which will broaden the dielectric constant temperature curve and increase the temperature stability of BaTiO3 ceramic matrix.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Sakabe Y. Multilayer Ceramic Capacitors[J]. Curr. Opin. Solid State Mater. Sci., 1997,2:584–587

    Article  Google Scholar 

  2. Azough F, Al-Saffar R, Freer R. A Transmission Electron Microscope Study of Commercial X7R-type Multilayer Ceramic Capacitors[J]. J. Eur. Ceram. Soc., 1998, 1 8: 751–758

    Article  Google Scholar 

  3. Song Tae-Ho, Randall Clive A. Copper Cofire X7R Dielectrics and Multilayer Capacitors Based on Zinc Borate Fluxed Barium Titanate Ceramic[J]. J. Elec. Ceram., 2003, 10:39–46

    Google Scholar 

  4. Lu D Y, Toda M. High-Permittivity Double Rare-Earth-Doped Barium Titanate Ceramics with Diffuse Phase Transition[J]. Amer. Ceram. Soc., 2006, 89: 3112–3123

    Article  Google Scholar 

  5. Morrison F D, Sinclair D C, West A R. Electrical and Structural Characteristics of Lanthanum-doped Barium Titanate Ceramics[J]. J.Appl.Phys., 1999, 86: 6355–6366

    Article  Google Scholar 

  6. Piskunov S, Heifets E, Eglitis RI, et al. Bulk Properties and Electronic Structure of SrTiO3, BaTiO3, PbTiO3 Perovskites: an Ab Initio HF/DFT Study[J]. Comput. Mater. Sci., 2004, 29, 165–178

    Article  Google Scholar 

  7. Matijevic E, Scheiner P. Ferric Hydrous Oxide Sols: III. Preparation of Uniform Particles by Hydrolysis of Fe(III)-chloride, -nitrate, and -perchlorate Solutions.[J] J. Coll. Interf. Sci., 1978,63(3)509–524

    Article  Google Scholar 

  8. Cohen RE. Origin of Ferroelectricity in Perovskite Oxides[J]. Letters of Nature, 1992,358:136–138

    Article  Google Scholar 

  9. Kimmel A V, Weaver P M, Cain M G, et al. Defect-Mediated Lattice Relaxation and Domain Stability in Ferroelectric Oxides[J]. Phys.Rev. Lett., 2012, 109: 117–601

    Article  Google Scholar 

  10. Huang Xuechen. Study on Synthesize and Modification of BaTiO3-BiYO3 Ceramics with High Temperature Stability over Wide Range[D]. Wuhan: Wuhan University of Technology, 2012

    Google Scholar 

  11. Daniels J E, Jo W, Rödel J, Jones J L. Electric-field-induced Phase Transformation at a Lead-free Morphotropic Phase Boundary: Case Study in a 93%(Bi0.5Na0.5)TiO3-7%BaTiO3 Piezoelectric Ceramic[J]. Appl. Phys. Lett., 2009, 95: 032904

    Article  Google Scholar 

  12. Cai M Q, Yin Z. Zhang M S. First-principles Study of Optical Properties of Barium Titanate[J]. Appl. Phys. Lett., 2003, 83: 2805–2807

    Article  Google Scholar 

  13. Diéguez O, Rabe K M, Vanderbilt D. First-principles Study of Epitaxial Strain in Perovskites[J]. Phys. Rev. B, 2005, 72, 144101–16

    Article  Google Scholar 

  14. Moriwake H. First-principles Calculation of Formation Energy of Neutral Point Defects in Perovskite-type BaTiO3[J]. Int. J. Quant. Chem., 2004, 99: 824–827

    Article  Google Scholar 

  15. Lee H S, Mizoguchi T, Yamamoto T, et al. First-principles Calculation of Defect Energetics in Cubic-BaTiO3 and a Comparison with SrTiO3[J]. Acta. Mater., 2007, 55: 6535

    Article  Google Scholar 

  16. Payne M C, Teter M P, Allan D C, et al. Iterative Minimization Techniques for Ab Initio Total-energy Calculations: Molecular Dynamics and Conjugate Gradients[J]. Rev. Mod. Phys., 1992, 64: 1045–1097

    Article  Google Scholar 

  17. Segall M D, Lindan P J D, Probert M J, et al. First-principles Simulation: Ideas, Illustrations and the CASTEP Code[J]. J. Phys. Cond. Matt., 2002, 14 (11): 2717

    Article  Google Scholar 

  18. Vanderbilt D. Soft Self-consistent Pseudopotentials in a Generalized Eigenvalue Formalism[J]. Phys. Rev. B, 1990, 41, 7892–7895

    Article  Google Scholar 

  19. Press W H, Flannery B P, Teulolsky S A, et al. 1989 Numerical Recipes[M]. Cambridge: Cambridge University Press, 1989

    Google Scholar 

  20. Wang YA, Carter EA. Orbital-Free Kinetic-Energy Density Functional Theory[J]. Theoretical Methods in Condensed Phase Chemistry, 2002, 5: 117–184

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenqin Zhang  (张文芹).

Additional information

Funded by the National Natural Science Foundation of China(No.50932004)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, W., Huang, X. & Liu, H. Ab initio study of doping mechanisms in BaTiO3-BiYO3 . J. Wuhan Univ. Technol.-Mat. Sci. Edit. 31, 543–547 (2016). https://doi.org/10.1007/s11595-016-1407-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-016-1407-7

Key words

Navigation