Skip to main content
Log in

Phase transformation of amorphous calcium carbonate to single-crystalline aragonite with macroscopic layered structure in the presence of egg white protein and zinc ion

  • Advanced Materials
  • Published:
Journal of Wuhan University of Technology-Mater. Sci. Ed. Aims and scope Submit manuscript

Abstract

Highly oriented calcium carbonate lamellas are exquisite structure produced by biomineralization. Strategies mimicking nature have been developed to synthesize inorganic materials with excellent structures and optimal properties. In our strategy, egg white protein and zinc ion were employed in the solution to induce the crystallization of calcium carbonate, resulting in the macroscopic aragonite laminate with an average length of 1.5 mm, which was comprised of single-crystalline tablets. During the crystallization at initial stage, it was found that the particles displayed the characteristics of amorphous calcium carbonate, which was then transformed into the sophisticated structured aragonite through a multistage assembly process. The rebuilt nacre structure in vitro was achieved owing to the synergistic effects of egg white protein and zinc ion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lowenstam H A, Weiner S. On Biomineralisation [M]. New York: Oxford Univ. Press, 1989

    Google Scholar 

  2. Mann S. Biomineralization[M]. Oxford: Oxford Univ. Press, 2001

    Google Scholar 

  3. Addadi L, Joester D, Nudelman F, et al. Mollusk Shell Formation: A Source of New Concepts for Understanding Biomineralization Processes[J]. Chem. Eur. J., 2006, 12: 980–987

    Article  Google Scholar 

  4. Sumper M, Brunner E. Silica Biomineralisation in Diatoms: The Model Organism Thalassiosira Pseudonana[J]. Chem. Bio. Chem., 2008, 9: 1 187–1 194

    Article  Google Scholar 

  5. Schiffman J D, Schauer C L. Solid State Characterization of Alpha-Chitin from Vanessa Cardui Linnaeus Wings[J]. Mater. Sci. Eng., C, 2009, 29: 1 370–1 374

    Article  Google Scholar 

  6. Falini G, Weiner S, Addadi L. Chitin-Silk Fibroin Interactions: Relevance to Calcium Carbonate Formation in Invertebrates[J]. Calcified Tissue International, 2003, 72: 548–554

    Article  Google Scholar 

  7. Wang Y, Azaïs T, Robin M, et al. The Predominant Role of Collagen in the Nucleation, Growth, Structure and Orientation of Bone Apatite [J]. Nature Mater., 2012, 11: 724–733

    Article  Google Scholar 

  8. Han Y J, Aizenberg J. Effect of Magnesium Ions on Oriented Growth of Calcite on Carboxylic Acid Functionalized Self-Assembled Monolayer[J]. J. Am. Chem. Soc., 2003, 125: 4 032–4 033

    Article  Google Scholar 

  9. Gao Y X, Yu S H, Cong H P, et al. Block-Copolymer-Controlled Growth of CaCO3 Microrings[J]. J. Phys. Chem. B, 2006, 110: 6 432–6 436

    Article  Google Scholar 

  10. Dickerson M B, Sandhage K H, Naik R R. Protein-and Peptide-Directed Syntheses of Inorganic Materials[J]. Chem. Rev., 2008, 108: 4 935–4 978

    Article  Google Scholar 

  11. Chen X Y, Tang Q, Liu D J, et al. Preparation and Characterization of Three-dimensional Chrysanthemun Flower-like Calcium Carbonate[J]. Journal of Wuhan University of Technology-Mater. Sci. Ed., 2012, 27: 708–714

    Article  Google Scholar 

  12. Awaji M, Machii A. Fundamental Studies on in vivo and in vitro Pearl Formation-Contribution of Outer Epithelial Cells of Pearl Oyster Mantle and Pearl Sacs[J]. Aqua-Bio Science Monographs, 2011, 4: 1–39

    Article  Google Scholar 

  13. Colfen H. Precipitation of Carbonates: Recent Progress in Controlled Production of Complex shapes[J]. Curr. Opin. Colloid Interface Sci., 2003, 8: 23–31

    Article  Google Scholar 

  14. Sondi I, Salopek-Sondi B, Skapin, S D, et al. A Novel Concept in the Growth and Design of Anhydrous Carbonate Minerals: Nano-scale Aggregation Mechanisms[J]. J. Colloid Interf. Sci., 2011, 354: 181–189

    Article  Google Scholar 

  15. Nassif N, Gehrke N, Pinna N, et al. Synthesis of Stable Aragonite Superstructures by a Biomimetic Crystallization Pathway[J]. Angew. Chem. Int. Ed., 2005, 44: 6 004–6 009

    Article  Google Scholar 

  16. Wang W Z, Wang G H, Liu Y K, et al. Synthesis and Characterization of Aragonite Whiskers by a Novel and Simple Route[J]. J. Mater. Chem., 2011, 11: 1 752–1 754

    Article  Google Scholar 

  17. Amos F F, Sharbaugh D M, Talham, D R, et al. Formation of Single-Crystalline Aragonite Tablets/Films via an Amorphous Precursor[J]. Langmuir, 2007, 23: 1 988–1 994

    Article  Google Scholar 

  18. Sugawara A, Kato T. Aragonite CaCO3 Thin-Film Formation by Cooperation of Mg2+ and Organic Polymer Matrices[J]. Chem. Commun., 2000, 487–488

    Google Scholar 

  19. Wang L, Sondi I, Matijevic E. Preparation of Uniform Needle-Like Aragonite Particles by Homogeneous Precipitation[J]. J. Colloid Interf. Sci., 1999, 218: 545–553

    Article  Google Scholar 

  20. Zhou G T, Yu G C, Wang X C, et al. Sonochemical Synthesis of Aragonite-type Calcium Carbonate with Different Morphologies[J]. New J. Chem., 2004, 28: 1 027–1 031

    Article  Google Scholar 

  21. Bao W J, Li H Q, Zhang, Y. Preparation of Monodispersed Aragonite Microspheres via a Carbonation Crystallization Pathway[J]. Cryst. Res. Technol., 2009, 44: 395–401

    Article  Google Scholar 

  22. Amos F F, Sharbaugh D M, Talham D R, et al. Formation of Single-Crystalline Aragonite Tablets/Films via an Amorphous Precursor[J]. Langmuir, 2007, 23: 1 988–1 994

    Article  Google Scholar 

  23. Blank S, Arnoldi M, Khoshnavaz S, et al. The Nacre Protein Perlucin Nucleates Growth of Calcium Carbonate Crystals[J]. J. Microsc., 2003, 212: 280–291

    Article  Google Scholar 

  24. Jimenez-Lopez C, Rodríguez-Navarro A, Dominguez-Vera J M, et al. Influence of Lysozyme on the Precipitation of Calcium Carbonate: A Kinetic and Morphologic Study[J]. Geochim. Cosmochim. Acta, 2003, 67: 1 667–1 676

    Article  Google Scholar 

  25. Voinescu A E, Touraud D, Lecker A, et al. Mineralization of CaCO3 in the Presence of Egg White Lysozyme[J]. Langmuir, 2007, 23: 12 269–12 274

    Article  Google Scholar 

  26. Liu X, Ma Y J, Zhou, Y, et al. A Promising Hybrid Scaffold Material: Bacterial Cellulose in-situ Assembling Biomimetic Lamellar CaCO3[J]. Mater. Lett., 2013, 102–103: 91–93

    Article  Google Scholar 

  27. Hu Y L, Ma Y J, Zhou Y, et al. Hen Eggwhite-Mediated Stack Crystallization of Calcium Carbonate[J]. J. Cryst. Growth, 2010, 312: 831–836

    Article  Google Scholar 

  28. Wada N, Yamashita K, Umegaki T. Effects of Divalent Cations upon Nucleation, Growth and Transformation of Calcium Carbonate Polymorphs under Conditions of Double Diffusion[J]. J. Cryst. Growth, 1995, 148: 297–304

    Article  Google Scholar 

  29. Hosoda N, Kato T. Thin-Film Formation of Calcium Carbonate Crystals: Effects of Functional Groups of Matrix Polymers[J]. Chem. Mater., 2001, 13: 688–693

    Article  Google Scholar 

  30. Kontoyannis C G, Vagenas N V. Calcium Carbonate Phase Analysis using XRD and FT-Raman Spectroscopy[J]. Analyst, 2000, 125: 251–255

    Article  Google Scholar 

  31. Wang T, Leng B X, Che R C, et al. Biomimetic Synthesis of Multilayered Aragonite Aggregates Using Alginate as Crystal Growth Modifier[J]. Langmuir, 2010, 26: 13 385–13 392

    Article  Google Scholar 

  32. Butler M F, Glaser N, Weaver A C. et al. Calcium Carbonate Crystallization in the Presence of Biopolymers[J]. Cryst. Growth. Des., 2006, 6: 781–794

    Article  Google Scholar 

  33. Matahwa H, Ramiah V, Sanderson, R D. Calcium Carbonate Crystallization in the Presence of Modified Polysaccharides and Linear Polymeric Additives[J]. J. Cryst. Growth, 2008, 310: 4 561–4 569

    Article  Google Scholar 

  34. Gower L B, Odom D J. Deposition of Calcium Carbonate Films by a Polymer-induced Liquid-Precursor (PILP) Process[J]. J. Cryst. Growth, 2000, 210: 719–734

    Article  Google Scholar 

  35. Gower L B. Biomimetic Model Systems for Investigating the Amorphous Precursor Pathway and Its Role in Biomineralization[J]. Chem. Rev., 2008, 108: 4 551–4 627

    Article  Google Scholar 

  36. Wang Y W, Kim Y Y, Stephens C J. In Situ Study of the Precipitation and Crystallization of Amorphous Calcium Carbonate (ACC)[J]. Cryst. Growth Des., 2012, 12: 1 212–1 217

    Article  Google Scholar 

  37. Weiss I M, Tuross N, Addadi L, et al. Mollusc Larval Shell Formation: Amorphous Calcium Carbonate is a Precursor Phase for Aragonite[J]. J. Exp.Zool., 2002, 293: 478–491

    Article  Google Scholar 

  38. Rodriguez-Blanco J D, Shaw S, Benning L G. The Kinetics and Mechanisms of Amorphous Calcium Carbonate (ACC) Crystallization to Calcite, via Vaterite[J]. Nanoscale, 2011, 3: 265–271

    Article  Google Scholar 

  39. Xu AW, Yu Q, Dong W F, et al. Stable Amorphous CaCO3 Microparticles with Hollow Spherical Superstructure Stabilized by Phytic Acid[J]. Adv, Mater., 2005, 17: 2 217–2 221

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhengyi Fu  (傅正义).

Additional information

Funded by the National Natural Science Foundation of China (No. 51161140399)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, H., Xie, J., Ping, H. et al. Phase transformation of amorphous calcium carbonate to single-crystalline aragonite with macroscopic layered structure in the presence of egg white protein and zinc ion. J. Wuhan Univ. Technol.-Mat. Sci. Edit. 30, 65–70 (2015). https://doi.org/10.1007/s11595-015-1102-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11595-015-1102-0

Key words

Navigation