Skip to main content
Log in

Lyapunov pairs for perturbed sweeping processes

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

We give a full characterization of nonsmooth Lyapunov pairs for perturbed sweeping processes under very general hypotheses. As a consequence, we provide an existence result and a criterion for weak invariance for perturbed sweeping processes. Moreover, we characterize Lyapunov pairs for gradient complementarity dynamical systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Acary, V., Bonnefon, O., Brogliato, B.: Nonsmooth Modeling and Simulation for Switched Circuits. Springer, Dordrecht (2011)

    Book  Google Scholar 

  2. Adly, S., Hantoute, A., Théra, M.: Nonsmooth Lyapunov pairs for infinite-dimensional first-order differential inclusions. Nonlinear Anal. 75(3), 985–1008 (2012)

    Article  MathSciNet  Google Scholar 

  3. Adly, S., Hantoute, A., Théra, M.: Nonsmooth Lyapunov pairs for differential inclusions governed by operators with nonempty interior domain. Math. Program. 157(2), 349–374 (2016)

    Article  MathSciNet  Google Scholar 

  4. Adly, S., Nacry, F., Thibault, L.: Preservation of prox-regularity of sets with applications to constrained optimization. SIAM J. Optim. 26(1), 448–473 (2016)

    Article  MathSciNet  Google Scholar 

  5. Aubin, J.P., Cellina, A.: Differential Inclusions Volume 264 of Grundlehren Math. Wiss. Springer, Berlin (1984)

  6. Aussel, D., Daniilidis, A., Thibault, L.: Subsmooth sets: functional characterizations and related concepts. Trans. Amer. Math. Soc. 357(4), 1275–1301 (2004)

    Article  MathSciNet  Google Scholar 

  7. Borwein, J., Zhu, Q.: Techniques of Variational Analysis, Volume 20 of CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, New York (2005)

  8. Brogliato, B.: Nonsmooth Mechanics, 3rd edn. Springer, Switzerland (2016)

    Book  Google Scholar 

  9. Brogliato, B., Lozano, R., Maschke, B., Egeland, O.: Dissipative Systems Analysis and Control Communication Control Enginering Series. Springer, London, 2nd edn (2007)

    Chapter  Google Scholar 

  10. Brogliato, B., Thibault, L.: Existence and uniqueness of solutions for non-autonomous complementarity dynamical systems. J. Convex Anal. 17(3–4), 961–990 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Cârjă, O., Monteiro-Marques, M.D.P.: Weak tangency, weak invariance, and carathéodory mappings. J. Dyn. Control Syst. 8(4), 445–461 (2002)

    Article  Google Scholar 

  12. Clarke, F.: Optimization and Nonsmooth Analysis. Wiley Intersciences, New York (1983)

    MATH  Google Scholar 

  13. Clarke, F.: Lyapunov functions and feedback in nonlinear control. In: de Queiroz, M., Malisoff, M., Wolenski, P. (eds.) Optimal Control, Stabilization and Nonsmooth Analysis. Springer, Berlin (2004)

    Google Scholar 

  14. Clarke, F.: Nonsmooth analysis in systems and control theory. In: Meyers, R.A. (ed.) Encyclopedia of Complexity and Systems Science. Springer, New York (2009)

    Google Scholar 

  15. Clarke, F., Ledyaev, Y., Stern, R., Wolenski, P.: Nonsmooth Analysis and Control Theory, Volume 178 of Grad. Texts in Math. Springer, New York (1998)

  16. Colombo, G., Palladino, M.: The minimum time function for the controlled Moreau’s sweeping process. SIAM J. Control Optim. 54(4), 2036–2062 (2016)

    Article  MathSciNet  Google Scholar 

  17. Hantoute, A., Mazade, M.: Lyapunov functions for evolution variational inequalities with uniformly prox-regular sets. Positivity 21(1), 423–448 (2017)

    Article  MathSciNet  Google Scholar 

  18. Hu, S., Papageorgiou, N.: Handbook of multivalued analysis. Vol. I Theory, Volume 419 of Mathematics and its Applications. Kluwer Academic Publishers, Dordrecht, (1997)

    Chapter  Google Scholar 

  19. Jourani, A., Vilches, E.: Positively \(\alpha \)-far sets and existence results for generalized perturbed sweeping processes. J. Convex Anal. 23(3), 775–821 (2016)

    MathSciNet  MATH  Google Scholar 

  20. Jourani, A., Vilches, E.: Moreau-Yosida regularization of state-dependent sweeping processes with nonregular sets. J. Optim. Theory Appl. 173(1), 91–116 (2017)

    Article  MathSciNet  Google Scholar 

  21. Krejc̆i, P.: Hysteresis, Convexity and Dissipation in Hyperbolic Equations, Volume 8 of GAKUTO International Series Mathametics Science Application. Gakkōtosho Co., Ltd., Tokyo (1996)

  22. Kunze, M., Monteiro-Marques, M.D.P.: An introduction to Moreau’s sweeping process. In: Impacts in Mechanical Systems (Grenoble, 1999), Volume 551 of Lecture Notes in Phys., pp. 1–60. Springer, Berlin (2000)

    Google Scholar 

  23. Maury, B., Venel, J.: Un modéle de mouvement de foule. ESAIM Proc. 18, 143–152 (2007)

    Article  Google Scholar 

  24. Moreau, J.J.: Rafle par un convexe variable I, expo. 15. Sém, Anal. Conv. Mont., pp. 1–43. (1971)

  25. Moreau, J.J.: Rafle par un convexe variable II, expo. 3. Sém, Anal. Conv. Mont., 1–36, 1972.

  26. Moreau, J.J.: Evolution problem associated with a moving convex set in a Hilbert space. J. Differ. Equ. 26(3), 347–374 (1977)

    Article  MathSciNet  Google Scholar 

  27. Moreau, J.J.: Numerical aspects of the sweeping process. Comput. Methods Appl. Mech. Eng. 177(3–4), 329–349 (1999)

    Article  MathSciNet  Google Scholar 

  28. Noel, J.: Inclusions différentielles d’évolution associées à des ensembles sous lisses. PhD thesis, Université Montpellier II (2013)

  29. Pang, J.-S., Stewart, D.E.: Differential variational inequalities. Math. Program. 113(2), 345–424 (2008)

    Article  MathSciNet  Google Scholar 

  30. Tanwani, A., Brogliato, B., Prieur, C.: Stability and observer design for Lur’e systems with multivalued, nonmonotone, time-varying nonlinearities and state jumps. SIAM J. Control Optim. 52(6), 3639–3672 (2014)

    Article  MathSciNet  Google Scholar 

  31. Thibault, L., Zakaryan, T.: Convergence of subdifferentials and normal cones in locally uniformly convex Banach space. Nonlinear Anal. 98, 110–134 (2014)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The research of the second author was supported by CONICYT-PCHA-Doctorado-Nacional 2013/21130676.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emilio Vilches.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hantoute, A., Vilches, E. Lyapunov pairs for perturbed sweeping processes. Optim Lett 12, 1773–1787 (2018). https://doi.org/10.1007/s11590-018-1231-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-018-1231-4

Keywords

Navigation