Skip to main content
Log in

Projection onto simplicial cones by a semi-smooth Newton method

  • Original Paper
  • Published:
Optimization Letters Aims and scope Submit manuscript

Abstract

In this paper the problem of projection onto a simplicial cone is studied. By using Moreau’s decomposition theorem for projecting onto closed convex cones, the problem of projecting onto a simplicial cone is reduced to finding the unique solution of a nonsmooth system of equations. It is shown that a semi-smooth Newton method applied to the system of equations associated to the problem of projecting onto a simplicial cone is always well defined, and the generated sequence is bounded for any starting point and a formula for any accumulation point of this sequence is presented. It is also shown that under a somewhat restrictive assumption, the semi-smooth Newton method applied to the system of equations associated to the problem of projecting onto a simplicial cone has finite convergence. Besides, under a mild assumption on the simplicial cone, the generated sequence converges linearly to the solution of the associated system of equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. see the popularity of the Wikimization page Projection on Polyhedral Cone at http://www.convexoptimization.com/wikimization/index.php/Special:Popularpages.

References

  1. Abbas, M., Németh, S.Z.: Solving nonlinear complementarity problems by isotonicity of the metric projection. J. Math. Anal. Appl. 386(2), 882–893 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Al-Sultan, K.S., Murty, K.G.: Exterior point algorithms for nearest points and convex quadratic programs. Math. Program. 57(2, Ser. B), 145–161 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bauschke, H.H., Borwein, J.M.: On projection algorithms for solving convex feasibility problems. SIAM Rev. 38(3), 367–426 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bazaraa, M.S., Sherali, H.D., Shetty, C.M.: Nonlinear Programming. Theory and algorithms, 3rd edn. Wiley, Hoboken (2006)

    Book  MATH  Google Scholar 

  5. Berk, R., Marcus, R.: Dual cones, dual norms, and simultaneous inference for partially ordered means. J. Am. Statist. Assoc. 91(433), 318–328 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  6. Censor, Y., Elfving, T., Herman, G.T., Nikazad, T.: On diagonally relaxed orthogonal projection methods. SIAM J. Sci. Comput. 30(1), 473–504 (2007/08)

    Article  MathSciNet  Google Scholar 

  7. Censor, Y., Gordon, D., Gordon, R.: Component averaging: an efficient iterative parallel algorithm for large and sparse unstructured problems. Parallel Comput. 27(6), 777–808 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chang, S.Y., Murty, K.G.: The steepest descent gravitational method for linear programming. Discrete Appl. Math. 25(3), 211–239 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  9. Clarke, F.H.: Optimization and Nonsmooth Analysis. Classics in applied mathematics, vol. 2. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1990)

  10. Dennis, J.E. Jr., Schnabel, R.B.: Numerical methods for unconstrained optimization and nonlinear equations, volume 16 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, (1996) (Corrected reprint of the 1983 original)

  11. Deutsch, F., Hundal, H.: The rate of convergence of Dykstra’s cyclic projections algorithm: the polyhedral case. Numer. Funct. Anal. Optim. 15(5–6), 537–565 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  12. Dykstra, R.L.: An algorithm for restricted least squares regression. J. Am. Statist. Assoc. 78(384), 837–842 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ekárt, A., Németh, A.B., Németh, S.Z.: Rapid heuristic projection on simplicial cones (2010) arXiv:1001.1928

  14. Foley, J.D., van Dam, A., Feiner, S.K., Hughes, J.F.: Computer Graphics: Principles and Practice. Addison-Wesley systems programming series (1990)

  15. Frick, H.: Computing projections into cones generated by a matrix. Biometrical J. 39(8), 975–987 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hiriart-Urruty, J.-B., Lemaréchal, C.: Convex analysis and minimization algorithms: Fundamentals. I. Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], volume 305, Springer, Berlin (1993)

  17. Hu, X.: An exact algorithm for projection onto a polyhedral cone. Aust. N. Z. J. Stat. 40(2), 165–170 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  18. Huynh, T., Lassez, C., Lassez, J.-L.: Practical issues on the projection of polyhedral sets. Ann. Math. Artif. Intell. 6(4), 295–315 (1992). Artificial intelligence and mathematics, II

    Article  MATH  MathSciNet  Google Scholar 

  19. Isac, G., Németh, A.B.: Monotonicity of metric projections onto positive cones of ordered Euclidean spaces. Arch. Math. (Basel) 46(6), 568–576 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  20. Isac, G., Németh, A.B.: Isotone projection cones in Euclidean spaces. Ann. Sci. Math. Québec 16(1), 35–52 (1992)

    MATH  Google Scholar 

  21. Liu, Z., Fathi, Y.: An active index algorithm for the nearest point problem in a polyhedral cone. Comput. Optim. Appl. 49(3), 435–456 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  22. Liu, Z., Fathi, Y.: The nearest point problem in a polyhedral set and its extensions. Comput. Optim. Appl. 53(1), 115–130 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  23. Mangasarian, O.L.: A generalized Newton method for absolute value equations. Optim. Lett. 3(1), 101–108 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Ming, T., Guo-Liang, T., Hong-Bin, F., Kai Wang, Ng: A fast EM algorithm for quadratic optimization subject to convex constraints. Statist. Sinica 17(3), 945–964 (2007)

    MATH  MathSciNet  Google Scholar 

  25. Moreau, J.J.: Décomposition orthogonale d’un espace hilbertien selon deux cônes mutuellement polaires. C. R. Acad. Sci. 255, 238–240 (1962)

    MATH  MathSciNet  Google Scholar 

  26. Morillas, P.M.: Dykstra’s algorithm with strategies for projecting onto certain polyhedral cones. Appl. Math. Comput. 167(1), 635–649 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  27. Murty, K.G.: Sigma Series in Applied Mathematics. Linear complementarity, linear and nonlinear programming. Heldermann, Berlin (1988)

    Google Scholar 

  28. Murty, K.G., Fathi, Y.: A critical index algorithm for nearest point problems on simplicial cones. Math. Program. 23(2), 206–215 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  29. Németh, A.B., Németh, S.Z.: How to project onto an isotone projection cone. Linear Algebra Appl. 433(1), 41–51 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  30. Németh, S.Z.: Characterization of latticial cones in Hilbert spaces by isotonicity and generalized infimum. Acta Math. Hungar. 127(4), 376–390 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Németh, S.Z.: Isotone retraction cones in Hilbert spaces. Nonlinear Anal. 73(2), 495–499 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  32. Scolnik, H.D., Echebest, N., Guardarucci, M.T., Vacchino, M.C.: Incomplete oblique projections for solving large inconsistent linear systems. Math. Program. 111(1–2, Ser. B), 273–300 (2008)

    MATH  MathSciNet  Google Scholar 

  33. Shusheng, X.: Estimation of the convergence rate of Dykstra’s cyclic projections algorithm in polyhedral case. Acta Math. Appl. Sinica (English Ser.) 16(2), 217–220 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  34. Stewart, G.W.: On the perturbation of pseudo-inverses, projections and linear least squares problems. SIAM Rev. 19(4), 634–662 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  35. Ujvári, M.: On the projection onto a finitely generated cone, 2007, Preprint WP 2007–5. MTA SZTAKI, Laboratory of Operations Research and Decision Systems, Budapest (2007)

Download references

Acknowledgments

The first author was supported in part by FAPEG, CNPq Grants 471815/2012-8, 303732/2011-3 and PRONEX–Optimization(FAPERJ/CNPq). The authors wish to express their gratitude to the reviewers for their helpful comments and for a shorter, more elegant proof of Lemma 5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Z. Németh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferreira, O.P., Németh, S.Z. Projection onto simplicial cones by a semi-smooth Newton method. Optim Lett 9, 731–741 (2015). https://doi.org/10.1007/s11590-014-0775-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11590-014-0775-1

Keywords

Navigation