Skip to main content
Log in

Analysis of modified Painlevé–Ince equations

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

We apply symmetry methods to modified Painlevé–Ince type equations. We utilise the results to indicate the equivalence of some equations as well as the solvability of others. We also indicate the use of Noether symmetries in the reduction of some equations. The “factorization” approach is also shown to yield interesting results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ablowitz, M.J., Clarkson, P.A.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)

    Book  Google Scholar 

  2. Abraham-Schrauner, B.: Hidden symmetries and linearization of the modified Painlevé–Ince equation. J. Math. Phys. 34, 4809–4816 (1993)

    Article  MathSciNet  Google Scholar 

  3. Anderson, R.L., Ibragimov, N.H.: Lie–Bäcklund Transformations in Applications. SIAM, Philadelphia (1979)

    Book  Google Scholar 

  4. Bluman, G.W., Reid, G.J., Kumei, S.: New classes of symmetries for partial differential equations. J. Math. Phys. 29(4), 806–811 (1988)

    Article  MathSciNet  Google Scholar 

  5. Bluman, G.W., Kumei, S.: Symmetry and Differential Equations. Springer, New York (1989)

    Book  Google Scholar 

  6. Chandrasekar, V.K., Santhilvelan, M., Lakshmanan, M.: On the complete integrability and linearization of certain second-order nonlinear ordinary differential equations. Proc. R. Soc. Lond. A 461, 2451–2477 (2005)

    MathSciNet  MATH  Google Scholar 

  7. Chandrasekar, V.K., Santhilvelan, M., Lakshmanan, M.: On the general solution of the modified Emden-type equation \(\ddot{x}+ \alpha x \dot{x} + \beta x^3 = 0\). J. Phys. A Math. Theor. 40, 4717–4727 (2007)

    Article  Google Scholar 

  8. Chandrasekar, V.K., Santhilvelan, M., Lakshmanan, M.: Reply to ‘Comment on “On the general solution for the modified Emden type equation \(\ddot{x}+ \alpha x \dot{x} + \beta x^3 = 0\)” ’. J. Phys. A Math. Theor. 40, 068002 (2008)

    Article  Google Scholar 

  9. Clarkson, P.A.: Nonclassical symmetry reductions for the Boussinesq equation. Chaos Solitons Fractals 5, 2261–2301 (1995)

    Article  MathSciNet  Google Scholar 

  10. Cornejo-Pérez, O., Rosu, H.C.: Nonlinear second order odes: factorizations and particular solutions. Prog. Theor. Phys. 114, 533–538 (2005)

    Article  MathSciNet  Google Scholar 

  11. Cornejo-Pérez, O.: Traveling wave solutions for some factorized nonlinear PDEs. J. Phys. A Math. Theor. 42, 035204 (2009)

    Article  MathSciNet  Google Scholar 

  12. Cornejo-Pérez, O., Belinchón, J.A.: Exact solutions of a flat full causal bulk viscous FRW cosmological model through factorization. Int. J. Mod. Phys. D 22, 1350031 (2013)

    Article  Google Scholar 

  13. de C Moreira, J.: “Comments on ‘A direct approach to finding exact invariants for one-dimensional time-dependent classical Hamiltonians,’ ” Research report IF/IJFRJ/83/25, Universidade Federal do Rio Janeiro, Instituto de Fisica, Cidade Universitaria, Ilha do Fundao, Rio de Janeiro, Brasil (1983)

  14. Dimas, S., Tsoubelis, D.: SYM: a new symmetry—finding package for mathematica, In: Ibragimov, N.H., Sophocleous, C., Damianou, P.A. (eds.) Proceedings of 10th International Conference in Modern Group Analysis. University of Cyprus, Nicosia, pp. 64–70 (2005). http://www.math.upatras.gr/~spawn

  15. Estévez, P.G., Kuru, S., Negro, J., Nieto, L.M.: Travelling wave solutions of two-dimensional Korteweg–de Vries–Burgers and Kadomtsev–Petviashvili equations. J. Phys. A Math. Gen. 39, 3911441 (2006)

    Article  MathSciNet  Google Scholar 

  16. Estévez, P.G., Kuru, S., Negro, J., Nieto, L.M.: Factorization of a class of almost linear second-order differential equations. J. Phys. A Math. Theor. 40, 9819 (2007)

    Article  MathSciNet  Google Scholar 

  17. Gaeta, G., Morando, P.: On the geometry of lambda-symmetries and PDE reduction. J. Phys. A Math. Gen. 37, 6955–6975 (2004)

    Article  MathSciNet  Google Scholar 

  18. Ghosh, S., Talukdar, B., Das, U., Saha, A.: Modified Emden-type equation with dissipative term quadratic in velocity. J. Phys. A Math. Theor. 45, 155207 (2012)

    Article  MathSciNet  Google Scholar 

  19. Govinder, K.S., Leach, P.G.L.: The nature and uses of symmetries of ordinary differential equations. S. Afr. J. Sci. 92, 23–28 (1996)

    Google Scholar 

  20. Govinder, K.S., Leach, P.G.L.: An elementary demonstration of the existence of \(s\ell (3, R)\) symmetry for all second order linear ordinary differential equations. SIAM Rev. 40, 945–946 (1998)

    Article  MathSciNet  Google Scholar 

  21. Iacono, R.: Comment on “On the general solution for the modified Emden type equation \(\ddot{x}+ \alpha x \dot{x} + \beta x^3 = 0\)”. J. Phys. A Math. Theor. 40, 068001 (2008)

    Article  Google Scholar 

  22. Ince, E.L.: Ordinary DifferentiaI Equations. Dover, New York (1956)

    Google Scholar 

  23. Kamke, E.: Differentialgleichungen Lösmethoden und Lösungen. Chelsea, New York (1971)

    Google Scholar 

  24. Kweyama, M.C., Govinder, K.S., Maharaj, S.D.: Noether and Lie symmetries for charged perfect fluids. Class. Quantum Grav. 28(10), 105005 (2011)

    Article  MathSciNet  Google Scholar 

  25. Lemmer, R.L., Leach, P.G.L.: The Painlevé test, hidden symmetries and the equation \(y^{\prime \prime }+y y^{\prime }+k y^3 =0\). J. Phys. A Math. Gen. 26, 5017–5024 (1993)

    Article  Google Scholar 

  26. Liu, C.S.: Direct integral method, complete discrimination system for polynomial and applications to classifications of all single traveling wave solutions to nonlinear differential equations: a survey. Preprint arXiv.org:nlin/0609058 (2006)

  27. Msomi, A.M., Govinder, K.S., Maharaj, S.D.: Gravitating fluids with Lie symmetries. J. Phys. A Math. Theor. 43, 285203 (2010)

    Article  MathSciNet  Google Scholar 

  28. Muriel, C., Romero, J.C.: First integrals, integrating factors and \(\lambda \)-symmetries of second-order differential equations. J. Phys. A Math. Theor. 42, 365207–365223 (2009)

    Article  MathSciNet  Google Scholar 

  29. Olver, P.: Applications of Lie Groups to Differential Equations. Springer, New York (1986)

    Book  Google Scholar 

  30. Painlevé, P.: Sur les équations différentielles du second ordre et d’ordre Supérieur dont l’intégrale générale est uniforme. Acta Math. 25, 1–85 (1902)

    Article  MathSciNet  Google Scholar 

  31. Pandey, S.N., Lakshmanan, M.: Lie point symmetries for nonlinear dissipative systems. In: Proceedings of the First National Conference on Nonlinear Systems & Dynamics (2003). http://ncnsd.org/proceedings/proceeding03/start.htm

  32. Pandey, S.N., Lakshmanan, M.: Lie symmetries and linearization of a generalized modified Emden type equation In: Proceedings of the Second National Conference on Nonlinear Systems & Dynamics (2005). http://ncnsd.org/proceedings/proceeding05/index.php

  33. Petropoulou, E.N., Tzirtzilakis, E.E.: On the logistic equation in the complex plane. Numer. Funct. Anal. Optim. 34, 770–790 (2013)

    Article  MathSciNet  Google Scholar 

  34. Pucci, E., Saccomandi, G.: On the reduction methods for ordinary differential equations. J. Phys. A Math. Gen. 35, 6145–6155 (2002)

    Article  MathSciNet  Google Scholar 

  35. Rosu, H.C., Cornejo-Pérez, O.: Supersymmetric pairing of kinks for polynomial nonlinearities. Phys. Rev. E 71, 046607 (2005)

    Article  MathSciNet  Google Scholar 

  36. Sarlet, W., Cantrijn, F.: Generalizations of Noether’s theorem in classical mechanics. SIAM Rev. 23, 467–494 (1981)

    Article  MathSciNet  Google Scholar 

  37. Wafo Soh, C., Mahomed, F.M.: Noether symmetries of \(y^{\prime \prime } = f(x)y^n \) with applications to non-static spherically symmetric perfect fluid solutions. Class. Quantum Grav. 16, 3553 (1999)

    Article  Google Scholar 

  38. Wang, D.S., Li, H.: Single and multi-solitary wave solutions to a class of nonlinear evolution equations. J. Math. Anal. Appl. 343, 273–298 (2008)

    Article  MathSciNet  Google Scholar 

  39. Wolfram Research: Mathematica, Version 9. Wolfram Research Inc, Champaign (2013)

    Google Scholar 

Download references

Acknowledgements

KSG thanks the University of KwaZulu–Natal and the National Research Foundation of South Africa for ongoing support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. S. Govinder.

Ethics declarations

Conflict of interest

KSG confirms that no conflict of interest exists.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Govinder, K.S. Analysis of modified Painlevé–Ince equations. Ricerche mat 71, 17–27 (2022). https://doi.org/10.1007/s11587-020-00517-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-020-00517-5

Keywords

Mathematics Subject Classification

Navigation