Skip to main content
Log in

Uncertainty principles for continuous wavelet transforms related to the Riemann–Liouville operator

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this paper we define and study the continuous wavelet transforms associated with the Riemann–Liouville operator, we give nice harmonic analysis results. Next we establish an analogue of Heisenberg’s inequality related to the wavelet transform. Last, we study the wavelet transform on subset of finite measures which deals with time frequency theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Baccar, C., Ben Hamadi, N., Rachdi, L.T.: Inversion formulas for the Riemann–Liouville transform and its dual associated with singular partial differential operators. Int. J. Math. Math. Sci. 2006, 1–26 (2006)

  2. Erdély, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transforms. McGraw-Hill, New York (1954)

    MATH  Google Scholar 

  3. Ghobber, S., Jaming, P.: Uncertainty principles for integral operators. Stud. Math. arXiv:1206.1195 (2012)

  4. Ghobber, S., Omri, S.: Time–frequency concentration of the windowed Hankel transform. Integral Transforms Spec. Funct. 25(6), 481–496 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  5. Heisenberg, W.: Über den anschaulichen inhalt der quantentheoretischen Kinematik und Mechanik. Z. Phys. 43(3–4), 172–198 (1927)

    Article  MATH  Google Scholar 

  6. Ma, R.: Heisenberg uncertainty principle on Chébli–Trimèche hypergroups. Pac. J. Math. 235(2), 289–296 (2008)

    Article  MATH  Google Scholar 

  7. Msehli, N., Rachdi, L.T.: Heisenberg–Pauli–Weyl uncertainty principle for the spherical mean operator. Mediterr. J. Math. 7(2), 169–194 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Omri, S., Rachdi, L.T.: Heisenberg–Paul–Weyl uncertainty principle for the Riemann–Liouville operator. J. Inequal. Pure Appl. Math. 9(3), 1–23 (2008)

    MATH  Google Scholar 

  9. Rachdi, L.T., Rouz, A.: On the range of the Fourier transform connected with Riemann–Liouville operator. Ann. Math. Blaise Pascal 16(2), 355–397 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  10. Stein, E.M.: Interpolation of linear operators. Trans. Am. Math. Soc. 83, 482–492 (1956)

    Article  MATH  MathSciNet  Google Scholar 

  11. Stein, E.M., Weiss, G.: Introduction to Fourier Analysis on Euclidean Spaces. Princeton University Press, Princeton (1971)

    MATH  Google Scholar 

  12. Trimèche, K.: Generalized Harmonic Analysis and Wavelet Packets: An Elementary Treatment of Theory and Applications. CRC Press, Boca Raton (2001)

    MATH  Google Scholar 

  13. Trimèche, K.: Generalized Wavelets and Hypergroups. CRC Press, Boca Raton (1997)

    MATH  Google Scholar 

  14. Watson, G.N.: A Treatise on the Theory of Bessel Functions. Cambridge Mathematical Library, Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

  15. Weyl, H.: Gruppentheorie und Quantenmechanik, Leipzig S. Hirzel. 1928, 288 S.

  16. Wilczok, E.: New uncertainty principles for the continuous Gabor transform and the continuous wavelet transform. Doc. Math. 5, 201–226 (2000)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lakhdar T. Rachdi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rachdi, L.T., Herch, H. Uncertainty principles for continuous wavelet transforms related to the Riemann–Liouville operator. Ricerche mat 66, 553–578 (2017). https://doi.org/10.1007/s11587-017-0320-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-017-0320-5

Keywords

Mathematics Subject Classification

Navigation