Skip to main content
Log in

On attainability of optimal controls in coefficients for system of Hammerstein type with anisotropic p-Laplacian

  • Published:
Ricerche di Matematica Aims and scope Submit manuscript

Abstract

In this paper we consider an optimal control problem (OCP) for the coupled system of a nonlinear monotone Dirichlet problem with anisotropic p-Laplacian and matrix-valued \(L^\infty (\varOmega ,\mathbb {R}^{N\times N})\)-controls in its coefficients and a nonlinear equation of Hammerstein type. Using the direct method in calculus of variations, we prove the existence of an optimal control in considered problem and provide sensitivity analysis for a specific case of considered problem with respect to two-parameter regularization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alessandrini, G., Sigalotti, M.: Geometric properties of solutions to the anistropic \(p\)-Laplace equation in dimension two. Annal. Acad. Scient. Fen. Mat. 21, 249–266 (2001)

    MATH  Google Scholar 

  2. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, New York (2000)

    MATH  Google Scholar 

  3. Akbarov, D.E., Melnik, V.S., Jasinskiy, V.V.: Coupled Systems Control Methods. Viriy, Kyiv (1998). in Russian

    Google Scholar 

  4. Bergman, D.J., Stroud, D.: Physical properties of macroscopically inhomogeneous media. North-Holla Solid State Phys. 46, 147–269 (1992)

    Article  Google Scholar 

  5. Buttazzo, G., Kogut, P.I.: Weak optimal controls in coefficients for linear elliptic problems. Rev. Mat. Complut. 24, 83–94 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Casas, E., Fernandez, L.A.: Optimal control of quasilinear elliptic equations with non differentiable coefficients at the origin. Rev. Mat. Univ. Compl. Madrid 4(2–3), 227–250 (1991)

    MATH  Google Scholar 

  7. Casas, E., Kogut, P.I., Leugering, G.: Approximation of optimal control problems in the coefficient for the \(p\)-Laplace equation. I. Convergence result. SIAM J. Control Optim

  8. D’Apice, C., De Maio, U., Kogut, O.P.: On shape stability of Dirichlet optimal control problems in coefficients for nonlinear elliptic equations. Adv. Differ. Equ. 15(7–8), 689–720 (2010)

    MATH  MathSciNet  Google Scholar 

  9. D’Apice, C., De Maio, U., Kogut, O.P.: Optimal control problems in coefficients for degenerate equations of monotone type: Shape stability and attainability problems. SIAM J. Control Optim. 50(3), 1174–1199 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. D’Apice, C., De Maio, U., Kogut, P.I., Manzo, R.: Solvability of an optimal control problem in coefficients for ill-posed elliptic boundary value problems. Electr. J. Differ. Equ. 166, 1–23 (2014)

    MATH  MathSciNet  Google Scholar 

  11. Hardy, G.H., Littlewood, J.E., Pòlya, G.: Inequalities. Cambridge University Press, Cambridge (1934)

    MATH  Google Scholar 

  12. Horsin, T., Kogut, P.I.: Optimal \(L^2\)-control problem in coefficients for a linear elliptic equation. Math. Control Relat. Fields 5(1), 73–96 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  13. Ivanenko, V.I., Mel’nik, V.S.: Varational Metods in Control Problems for Systems with Distributed Parameters. Naukova Dumka, Kiev (1988). in Russian

    Google Scholar 

  14. Kogut, P.I.: On approximation of an optimal boundary control problem for linear elliptic equation with unbounded coefficients. Discret. Contin. Dyn. Syst. Ser. A 34(5), 2105–2133 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kogut, P.I., Leugering, G.: Optimal Control Problems for Partial Differential Equations on Reticulated Domains Series: Systems and Control. Birkhäuser Verlag (2011)

  16. Kogut, P.I., Leugering, G.: Matrix-valued L1-optimal control in the coefficients of linear elliptic problems. J. Anal. Appl. (ZAA) 32(4), 433–456 (2013)

    MATH  Google Scholar 

  17. Kupenko, O.P., Manzo, R.: On an optimal \(L^1\)-control problem in coefficients for linear elliptic variational inequality. Abstr. Appl. Anal. 2013, 1–13 (2013)

    Article  MathSciNet  Google Scholar 

  18. Kupenko, O. P., Manzo, R.: Approximation of an Optimal Control Problem in Coefficient for Variational Inequality with Anisotropic \(p\)-Laplacian Nonlinear Differential Equations and Applications (in press)

  19. Kupenko, O.P., Manzo, R.: Shape stability of optimal control problems in coefficients for coupled system of Hammerstein type DCDS. Ser. B 20(8), 2967–2992 (2015)

    MATH  MathSciNet  Google Scholar 

  20. Levy, O., Kohn, R.V.: Duality relations for non-ohmic composites, with applications to behavior near percolation. J. Statist. Phys. 90, 159–189 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lions, J.-L.: Optimal Control of Systems Governed by Partial Differential Equations. Springer Verlag, New York (1971)

    Book  MATH  Google Scholar 

  22. Lions, J.-L.: Some Methods of Solving Non-Linear Boundary Value Problems. Dunod-Gauthier-Villars, Paris (1969)

    Google Scholar 

  23. Lurie, K.A.: Applied Optimal Control Theory of Distributed Systems. Plenum Press, NewYork (1993)

    Book  MATH  Google Scholar 

  24. Roubíček, T.: Nonlinear Partial Differential Equations with Applications. Birkhäuser, Basel (2013)

    Book  MATH  Google Scholar 

  25. Vainberg, M.M., Lavrentieff, I.M.: Nonlinear equations of Hammerstein type with potential and monotone operators in Banach spaces. Matematicheskij Sbornik 3(87), 324–337 (1972). in Russian

    MathSciNet  Google Scholar 

  26. Zgurovski, M.Z., Mel’nik, V.S., Novikov, A.N.: Applied Methods for Analysis and Control of Nonlinear Processes and Fields. Naukova Dumka, Kiev (2004). in Russian

    Google Scholar 

  27. Zgurovski, M.Z., Mel’nik, V.S.: Nonlinear Analysis and Control of Physical Processes and Fields. Springer-Verlag, Berlin (2004)

    Book  Google Scholar 

  28. Zhikov, V.V.: On the weak convergence of fluxes to flux. Russian Acad. Sci. Dokl. (Math.) 81(1), 58–62 (2010)

    MATH  MathSciNet  Google Scholar 

  29. Pastukhova, S.E.: Degenerate equations of monotone type: Lavrentev phenomenon and attainability problems. Sbornik: Math. 10(198), 1465–1494 (2007)

    Article  MATH  Google Scholar 

  30. Wang, G., Xia, C.: A characterization of the Wulff shape by an overdetermined anisotropic PDE. Arch. Ration. Mech. Anal. 99, 99–115 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  31. Xia, C.: On a Class of Anisotropic Problems. PhD-thesis at Albert-Ludwigs-Universität Freiburg (2012)

Download references

Acknowledgments

The research was partially supported by Grant of the President of Ukraine GP/F61/017 and Grant of NAS of Ukraine 2284/15.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiziana Durante.

Additional information

Communicated by L. Carbone.

Appendix

Appendix

Proof of Proposition 3

Boundedness. From the assumptions on \(\mathcal {F}_k\) and the boundedness of A, we get

$$\begin{aligned} \Vert \mathcal {A}_{{\varepsilon },k}\Vert&=\sup _{\Vert y\Vert _{H^1_0(\varOmega )}\le 1}\Vert \mathcal {A}_{{\varepsilon },k} y\Vert _{H^{-1}(\varOmega )} \\&=\sup _{\Vert y\Vert _{H^1_0(\varOmega )}\le 1} \sup _{\Vert v\Vert _{H^1_0(\varOmega )}\le 1}\left<\mathcal {A}_{{\varepsilon },k} y,v\right>_{H^{-1}(\varOmega );H_0^1(\varOmega )}\\&= \sup _{\Vert y\Vert _{H^1_0(\varOmega )}\le 1} \sup _{\Vert v\Vert _{H^1_0(\varOmega )}\le 1} \int _\varOmega \left[ {\varepsilon }+\mathcal {F}_k\big (|A^\frac{1}{2}\nabla y|^2\big )\right] ^{\frac{p-2}{2}}\left( \nabla v,A\nabla y\right) _{\mathbb {R}^N} dx\\&\le \frac{\Vert \xi _2\Vert ^2_{L^\infty (\varOmega )}}{\left( {\varepsilon }+k^2+1\right) ^{\frac{2-p}{2}}}\sup _{\Vert y\Vert _{H^1_0(\varOmega )}\le 1} \sup _{\Vert v\Vert _{H^1_0(\varOmega )}\le 1} \Vert y\Vert _{H^1_0(\varOmega )}\Vert v\Vert _{H^1_0(\varOmega )}=C_{{\varepsilon },k}. \end{aligned}$$

\(\square \)

Strict monotonicity We make use of the following algebraic inequality, which is proved in [18, Proposition 4.4]:

$$\begin{aligned} \left( \big ({\varepsilon }+\mathcal {F}_k(|a|^2)\big )^{\frac{p-2}{2}}a- \big ({\varepsilon }+\mathcal {F}_k(|b|^2)\big )^{\frac{p-2}{2}}b,a-b\right) _{\mathbb {R}^N} \ge {\varepsilon }^{\frac{p-2}{2}} |a-b|^2,\quad a,b\!\in \! \mathbb {R}^N. \end{aligned}$$

With this, having put \(a:=A^\frac{1}{2}\nabla y\), \(b:=A^\frac{1}{2}\nabla v\) we obtain

$$\begin{aligned} \big < \mathcal {A}_{{\varepsilon },k}(A,y)-\mathcal {A}_{{\varepsilon },k}(A,v), y-v\big >_{H^{-1}(\varOmega );H^1_0(\varOmega )}&\ge {\varepsilon }^{\frac{p-2}{2}} \int _\varOmega |A^\frac{1}{2}\nabla y-A^\frac{1}{2}\nabla v|^2 dx \\&\ge \alpha ^2 {\varepsilon }^{\frac{p-2}{2}} \Vert y-v\Vert ^2_{H^1_0(\varOmega )}\ge 0. \end{aligned}$$

Since the relation \(\big < \mathcal {A}_{{\varepsilon },k}(A,y)-\mathcal {A}_{{\varepsilon },k}(A,v), y-v\big >_{H^{-1}(\varOmega );H^1_0(\varOmega )}=0 \) implies \(y=v\), it follows that the strict monotonicity property (13), (14) holds true for each \(A\in \mathfrak {A}_{ad}\), \(k\in \mathbb {N}\), and \({\varepsilon }>0\).

Coercivity The coercivity property obviously follows from the estimate

$$\begin{aligned} \big <\mathcal {A}_{{\varepsilon },k}(A,y),y\big >_{H^{-1}(\varOmega );H^1_0(\varOmega )} \ge \alpha ^2{\varepsilon }^{\frac{p-2}{2}}\Vert y\Vert ^2_{H_0^1(\varOmega )}. \end{aligned}$$
(90)

Semi-continuity In order to get the equality

$$\begin{aligned} \lim _{t\rightarrow 0} \langle \mathcal {A}_{{\varepsilon },k}(A,y+tw),v\rangle _{H^{-1}(\varOmega );H^1_0(\varOmega )}= \langle \mathcal {A}_{{\varepsilon },k}(A,y),v\rangle _{H^{-1}(\varOmega );H^1_0(\varOmega )}, \end{aligned}$$

it is enough to observe that

$$\begin{aligned} ({\varepsilon }+\mathcal {F}_k(|A^\frac{1}{2}(\nabla y+t\nabla w)|^2))^{\frac{p-2}{2}}A\left( \nabla y+t\nabla w\right) \rightarrow ({\varepsilon }+\mathcal {F}_k(|A^\frac{1}{2}\nabla y|^2))^{\frac{p-2}{2}}A\nabla y, \end{aligned}$$

as \(t\rightarrow 0\) almost everywhere in \(\varOmega \), and make use of Lebesgue’s dominated convergence theorem.

Proof of Proposition 4

Similarly to the proof of Proposition 3, the boundedness, strict monotonicity, and radial continuity of \(F_{{\varepsilon },k}\) can be shown. It remains to prove the compactness property. Let \(y_n\rightharpoonup y_0\) in \(H_0^1(\varOmega )\). Hence, \(y_n\rightarrow y_0\) strongly in \(L^2(\varOmega )\) and, up to a subsequence, \(y_n\rightarrow y_0\) a.e. in \(\varOmega \). We must show that \(F_{{\varepsilon },k}(y_n,z)\rightarrow F_{{\varepsilon },k}(y_0,z)\) strongly in \(L^2(\varOmega )\), i.e.

$$\begin{aligned}&\int _\varOmega |F_{{\varepsilon },k}(y_n,z)- F_{{\varepsilon },k}(y_0,z)|^2\,dx\nonumber \\&\quad =\int _\varOmega |({\varepsilon }+\mathcal {F}_k(|y_n|^2))^{\frac{p-2}{2}}y_n-({\varepsilon }+\mathcal {F}_k(|y_0|^2))^{\frac{p-2}{2}}y_0|^2dx\rightarrow 0\quad \text{ as } \,n\rightarrow \infty .\nonumber \\ \end{aligned}$$
(91)

Obviously, \(|({\varepsilon }+\mathcal {F}_k(|y_n|^2))^{\frac{p-2}{2}}y_n-({\varepsilon }+\mathcal {F}_k(|y_0|^2))^{\frac{p-2}{2}}y_0|^2\rightarrow 0\) a.e. in \(\varOmega \). Also, the following estimate implies the equi-integrability property of this function

$$\begin{aligned}&\int _\varOmega |({\varepsilon }+\mathcal {F}_k(|y_n|^2))^{\frac{p-2}{2}}y_n-({\varepsilon }+\mathcal {F}_k(|y_0|^2))^{\frac{p-2}{2}}y_0|^2\,dx\\&\quad \le 2 ({\varepsilon }+k^2+1)^{p-2}\int _\varOmega (|y_n|^2+|y_0|^2)\,dx\le C_{{\varepsilon },k},\;\forall \, n\in \mathbb {N}. \end{aligned}$$

Therefore, due to Lebesgue’s Theorem 1,

$$\begin{aligned} |({\varepsilon }+\mathcal {F}_k(|y_n|^2))^{\frac{p-2}{2}}y_n-({\varepsilon }+\mathcal {F}_k(|y_0|^2))^{\frac{p-2}{2}}y_0|^2\rightarrow 0 \text{ strongly } \text{ in } L^1(\varOmega ), \end{aligned}$$

i.e. (91) holds true.

Proof of Proposition 6

Let us fix an arbitrary element y of \(H^1_0(\varOmega )\). We associate with this element the set \(\varOmega _k(A,y)\), where \(\varOmega _k(A,y):=\{x\in \varOmega : |A^\frac{1}{2}\nabla y(x)|>\sqrt{k^2+1}\}\). Then

$$\begin{aligned} \int _\varOmega g y\,dx&= \Vert g\Vert _{L^2(\varOmega )}\Vert y\Vert _{L^2(\varOmega )}\mathop {\le }\limits ^{\text {by Friedrich's inequality}} C_\varOmega \Vert g\Vert _{L^2(\varOmega )}\Vert \nabla y\Vert _{L^2(\varOmega )^N}\\&\le C_\varOmega \Vert g\Vert _{L^2(\varOmega )}\big [\Vert \nabla y\Vert _{L^2(\varOmega \setminus \varOmega _k(A,y))^N}+ \Vert \nabla y\Vert _{L^2(\varOmega _k(A,y))^N}\big ].\nonumber \end{aligned}$$
(92)

Since \(\mathcal {F}_k(|A^\frac{1}{2}\nabla y|^2)=|A^\frac{1}{2}\nabla y|^2\) a.e. in \(\varOmega {\setminus }\varOmega _k(A,y)\), and \(k^2\le \mathcal {F}_k(|A^\frac{1}{2}\nabla y|^2)\le k^2+ 1\) a.e. in \(\varOmega _k(A,y)\) \(\forall \,k\in \mathbb {N}\), we get

$$\begin{aligned}&\Vert \nabla y\Vert _{L^2(\varOmega \setminus \varOmega _k(A,y))^N}\le \alpha ^{-1}\left( \int _{\varOmega \setminus \varOmega _k(A,y)}|A^\frac{1}{2}\nabla y|^2\,dx\right) ^\frac{1}{2}\\&\quad \le \alpha ^{-1} |\varOmega \setminus \varOmega _k(A,y)|^{\frac{p-2}{2p}}\left( \int _{\varOmega \setminus \varOmega _k(A,y)} |A^\frac{1}{2}\nabla y|^p\,dx\right) ^{\frac{1}{p}}\\&\quad \le \alpha ^{-1}|\varOmega |^{\frac{p-2}{2p}} \left( \int _{\varOmega \setminus \varOmega _k(A,y)} ({\varepsilon }+|A^\frac{1}{2}\nabla y|^2)^{\frac{p-2}{2}}|A^\frac{1}{2}\nabla y|^2\,dx\right) ^{\frac{1}{p}}\\&\quad =\alpha ^{-1} |\varOmega |^{\frac{p-2}{2p}} \left( \int _{\varOmega \setminus \varOmega _k(A,y)} ({\varepsilon }+\mathcal {F}_k(|A^\frac{1}{2}\nabla y|^2))^{\frac{p-2}{2}}|A^\frac{1}{2}\nabla y|^2\,dx\right) ^{\frac{1}{p}} \\&\quad \le \alpha ^{-1}|\varOmega |^{\frac{p-2}{2p}}\Vert y\Vert _{A,{\varepsilon },k}, \end{aligned}$$

and

$$\begin{aligned}&\Vert \nabla y\Vert _{L^2(\varOmega _k(A,y))^N}\le \alpha ^{-1}\left( \int _{\varOmega _k(A,y)}|A^\frac{1}{2}\nabla y|^2\,dx\right) ^{\frac{1}{2}}\\&\quad \le \displaystyle \frac{\alpha ^{-1}}{k^\frac{p-2}{2}}\left( \int _{\varOmega _k(A,y)} ({\varepsilon }+\mathcal {F}_k(|A^\frac{1}{2}\nabla y|^2))^{\frac{p-2}{2}}|A^\frac{1}{2}\nabla y|^2\,dx\right) ^{\frac{1}{2}}\le \displaystyle \frac{\alpha ^{-1}}{k^\frac{p-2}{2}}\Vert y\Vert ^{\frac{p}{2}}_{A,{\varepsilon },k}. \end{aligned}$$

As a result, inequality (92) finally implies the desired estimate. The proof is complete.

Proof of Proposition 8

Due to strong convergence \(\left( {\varepsilon }_n+\mathcal {F}_{k_n}(y_0^2)\right) ^\frac{p-2}{2}y_0\rightarrow |y_0|^{p-2}y_0\) in \(L^q(\varOmega )\) and relations

$$\begin{aligned}&\left( {\varepsilon }_n+\mathcal {F}_{k_n}(y_n^2)\right) ^\frac{p-2}{2}y_n-\left( {\varepsilon }_n+\mathcal {F}_{k_n}(y_0^2)\right) ^\frac{p-2}{2}y_0 =\left( {\varepsilon }_n+\mathcal {F}_{k_n}(y_n^2)\right) ^\frac{p-2}{2}(y_n-y_0)\nonumber \\&\quad +\left( \left( {\varepsilon }_n+\mathcal {F}_{k_n}(y_n^2)\right) ^\frac{p-2}{2}- \left( {\varepsilon }_n+\mathcal {F}_{k_n}(y_0^2)\right) ^\frac{p-2}{2}\right) y_0=I_1^k+I_2^k, \end{aligned}$$
(93)

it is enough to prove that \(I_i^k\rightarrow 0\) strongly in \(L^q(\varOmega )\) as \(k\rightarrow \infty \) for \(i=1,2\).

Step 1 To prove \(\Vert I_1\Vert ^q_{L^q}=\int _\varOmega \left| \left( {\varepsilon }_n+\mathcal {F}_{k_n}(y_n^2)\right) ^\frac{p-2}{2}\right| ^\frac{p}{p-1}|y_n-y_0|^\frac{p}{p-1}\,dx\rightarrow 0\) we use Lemma 2. The initial suppositions imply that sequence \(\{\varphi _n=|y_n-y_0|^\frac{p}{p-1}\}_{n\in \mathbb {N}}\) is bounded in \(L^1(\varOmega )\) and converges to 0 almost everywhere in \(\varOmega \). On this step we are left to prove only the equi-integrability property of the sequence \(\left| {\varepsilon }_n+\mathcal {F}_{k_n}(y_n^2)\right| ^\frac{p(p-2)}{2(p-1)}\). Let us notice, that \(\displaystyle \frac{p(p-2)}{2(p-1)}< \displaystyle \frac{p-1}{2}<\displaystyle \frac{p}{2}\) and, using Hölder inequality with exponents \(1/s+1/s'=1\), where \(s=\displaystyle \frac{p}{2}/\displaystyle \frac{p(p-2)}{2(p-1)}=\displaystyle \frac{p-1}{p-2}\), \(s'=p-1\), we have

$$\begin{aligned} \int _\varOmega \left| {\varepsilon }_n+\mathcal {F}_{k_n}(y_n^2)\right| ^\frac{p(p-2)}{2(p-1)}\,dx&\le \left( \int _\varOmega \left| {\varepsilon }_n+\mathcal {F}_{k_n}(y_n^2)\right| ^\frac{p}{2}dx\right) ^\frac{p-2}{p-1}|\varOmega |^\frac{1}{p-1}\nonumber \\&\le \left( \int _\varOmega \left| {\varepsilon }_n+\mathcal {F}_{k_n}(y_n^2)\right| ^\frac{p-2}{2}({\varepsilon }_n+y_n^2)dx\right) ^\frac{p-2}{p-1}|\varOmega |^\frac{1}{p-1}\nonumber \\&=\left( \int _\varOmega (J_1+J_2)\,dx\right) ^\frac{p-2}{p-1}|\varOmega |^\frac{1}{p-1}\le C|\varOmega |^\frac{1}{p-1}. \end{aligned}$$
(94)

Indeed, \(\int _\varOmega J_1\,dx ={\varepsilon }_n\int _\varOmega \left| {\varepsilon }_n+\mathcal {F}_{k_n}(y_n^2)\right| ^\frac{p-2}{2}\,dx\rightarrow 0\), because \({\varepsilon }_n\rightarrow 0\) and within a subsequence, still denoted by the same index, \(\left| {\varepsilon }_n+\mathcal {F}_{k_n}(y_n^2)\right| ^\frac{p-2}{2}\rightarrow |y_0|^{p-2}\) a.e. in \(\varOmega \). As for the second integral, we have

$$\begin{aligned} \int _\varOmega J_2\,dx\le \Vert \left( {\varepsilon }_n+\mathcal {F}_{k_n}(y_n^2)\right) ^\frac{p-2}{2}y_n\Vert _{L^2(\varOmega )}\Vert y_n\Vert _{L^2(\varOmega )}\le C\sup _{n\in \mathbb {N}}\Vert y_n\Vert _{L^2(\varOmega )}. \end{aligned}$$

Step 2 Here we prove that \(I_2^q\rightarrow 0\) strongly in \(L^1(\varOmega )\). Indeed, within a subsequence, \(({\varepsilon }_n+\mathcal {F}_{k_n}(y_n^2))^\frac{p-2}{2}- ({\varepsilon }_n+\mathcal {F}_{k_n}(y_0^2))^\frac{p-2}{2}\rightarrow 0\) a.e. in \(\varOmega \) and closely following the arguments of the previous step it can be shown that

$$\begin{aligned}&\int _\varOmega \left| ({\varepsilon }_n+\mathcal {F}_{k_n}(y_n^2))^\frac{p-2}{2}-({\varepsilon }_n+\mathcal {F}_{k_n}(y_0^2))^\frac{p-2}{2}\right| ^\frac{p}{p-1}\,dx\\&\quad \le \left( \int _\varOmega |{\varepsilon }_n+\mathcal {F}_{k_n}(y_n^2)|^\frac{p(p-2)}{2(p-1)}\,dx+\int _\varOmega |{\varepsilon }_n+\mathcal {F}_{k_n}(y_0^2)|^\frac{(p-2)p}{2(p-1)}\,dx\right) ^\frac{p}{p-1}\le c. \end{aligned}$$

It remains to apply Lemma 2.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Durante, T., Kupenko, O.P. & Manzo, R. On attainability of optimal controls in coefficients for system of Hammerstein type with anisotropic p-Laplacian. Ricerche mat 66, 259–292 (2017). https://doi.org/10.1007/s11587-016-0300-1

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11587-016-0300-1

Keywords

Mathematics Subject Classification

Navigation