Skip to main content
Log in

Recent developments in noble metal–based hybrid electrocatalysts for overall water splitting

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The quest for sustainable energy sources has accelerated the exploration of water splitting as a method of clean hydrogen production. Among the various electrocatalysts designed to drive water splitting, noble metal–based electrocatalysts have recently emerged as promising candidates. This review highlights the recent developments in noble metal–based electrocatalysts for overall water splitting. These electrocatalysts integrate the exceptional catalytic properties of noble metals, such as platinum, iridium, and ruthenium, with diverse materials, including transition metals, carbon substrates, and metal oxides, to enhance their efficiency, stability, and cost-effectiveness. This review discusses recent developments on noble metals such as platinum, palladium, rhodium, ruthenium, iridium, and noble metal–based hybrid materials as bifunctional electrocatalysts for overall water splitting. In addition, the existing obstacles and prospects for bifunctional water-splitting electrocatalysts are also focused.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Li XP, Huang C, Han WK, Ouyang T, Liu ZQ (2021) Transition metal-based electrocatalysts for overall water splitting. Chin Chem Lett 32:2597–2616. https://doi.org/10.1016/j.cclet.2021.01.047

    Article  CAS  Google Scholar 

  2. Hou Y, Zhuang X, Feng X (2017) Recent advances in Earth-abundant heterogeneous electrocatalysts for photoelectrochemical water splitting. Small Methods 1:1700090. https://doi.org/10.1002/smtd.201700090

    Article  CAS  Google Scholar 

  3. Zou X, Zhang Y (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44:5148–5180. https://doi.org/10.1039/c4cs00448e

    Article  CAS  PubMed  Google Scholar 

  4. Dresselhaus MS, Thomas IL (2001) Alternative energy technologies. dresselhaus2001. Nature 414:332–337

    Article  CAS  PubMed  Google Scholar 

  5. De Luna P, Hahn C, Higgins D, Jaffer SA, Jaramillo TF, Sargent EH (2019) What would it take for renewably powered electrosynthesis to displace petrochemical processes? Science (80) 364. https://doi.org/10.1126/science.aav3506

  6. Zhao P, Huang Y, Chen J, Shao S, Miao H, Xia J, Jia C, Hua M (2020) Preparation of meso-tetraphenyl porphyrin modified defect-rich BiOCl with enhanced visible-light photocatalytic activity for antibiotic degradation and mechanism insight. J Photochem Photobiol 3–4:100014. https://doi.org/10.1016/j.jpap.2020.100014

    Article  Google Scholar 

  7. Wen J, Ling L, Chen Y, Bian Z (2020) Pyroelectricity effect on photoactivating palladium nanoparticles in PbTiO3 for Suzuki coupling reaction. Chin J Catal 41:1674–1681. https://doi.org/10.1016/S1872-2067(20)63581-1

    Article  CAS  Google Scholar 

  8. Dong J, Zhang Y, Hussain MI, Zhou W, Chen Y, Wang LN (2022) G-c3 n4: Properties, pore modifications, and photocatalytic applications. Nanomaterials 12:1–35. https://doi.org/10.3390/nano12010121

    Article  CAS  Google Scholar 

  9. Xu YF, Rao HS, Chen BX, Lin Y, Chen HY, Kuang D, Bin; Su, C.Y. (2015) Achieving highly efficient photoelectrochemical water oxidation with a TiCl4 treated 3D antimony-doped SnO2 macropore/branched α-Fe2O3 nanorod heterojunction photoanode. Adv Sci 2. https://doi.org/10.1002/advs.201500049

  10. Tang H, Hessel CM, Wang J, Yang N, Yu R, Zhao H, Wang D (2014) Two-dimensional carbon leading to new photoconversion processes. Chem Soc Rev 43:4281–4299. https://doi.org/10.1039/c3cs60437c

    Article  CAS  PubMed  Google Scholar 

  11. Luo J, Im JH, Mayer MT, Schreier M, Nazeeruddin MK, Park NG, Tilley SD, Fan HJ, Grätzel M (2014) Water photolysis at 12.3% efficiency via perovskite photovoltaics and Earth-abundant catalysts. Science (80-) 345:1593–1596. https://doi.org/10.1126/science.1258307

    Article  CAS  Google Scholar 

  12. Zhou F, Zhou Y, Liu GG, Wang CT, Wang J (2021) Recent advances in nanostructured electrocatalysts for hydrogen evolution reaction. Rare Metals 40:3375–3405. https://doi.org/10.1007/s12598-021-01735-y

    Article  CAS  Google Scholar 

  13. Liu Y, Chen N, Li W, Sun M, Wu T, Huang B, Yong X, Zhang Q, Gu L, Song H et al (2022) Engineering the synergistic effect of carbon dots-stabilized atomic and subnanometric ruthenium as highly efficient electrocatalysts for robust hydrogen evolution. SmartMat 3:249–259. https://doi.org/10.1002/smm2.1067

    Article  CAS  Google Scholar 

  14. Yuan J, Cheng X, Wang H, Lei C, Pardiwala S, Yang B, Li Z, Zhang Q, Lei L, Wang S et al (2020) A superaerophobic bimetallic selenides heterostructure for efficient industrial-level oxygen evolution at ultra-high current densities. Nano-Micro Lett 12. https://doi.org/10.1007/s40820-020-00442-0

  15. Niu S, Jiang WJ, Wei Z, Tang T, Ma J, Hu JS, Wan LJ (2019) Se-doping activates FeOOH for cost-effective and efficient electrochemical water oxidation. J Am Chem Soc 141:7005–7013. https://doi.org/10.1021/jacs.9b01214

    Article  CAS  PubMed  Google Scholar 

  16. Chen G, Zhu Y, Chen HM, Hu Z, Hung SF, Ma N, Dai J, Lin HJ, Chen CT, Zhou W et al (2019) An amorphous nickel–iron-based electrocatalyst with unusual local structures for ultrafast oxygen evolution reaction. Adv Mater 31:1–7. https://doi.org/10.1002/adma.201900883

    Article  CAS  Google Scholar 

  17. Wang C, Shang H, Xu H, Du Y (2021) Nanoboxes endow non-noble-metal-based electrocatalysts with high efficiency for overall water splitting. J Mater Chem A 9:857–874. https://doi.org/10.1039/d0ta10596a

    Article  CAS  Google Scholar 

  18. Jo YK, Lee JM, Son S, Hwang SJ (2019) 2D inorganic nanosheet-based hybrid photocatalysts: design, applications, and perspectives. J Photochem Photobiol C: Photochem Rev 40:150–190. https://doi.org/10.1016/j.jphotochemrev.2018.03.002

    Article  CAS  Google Scholar 

  19. Li W, Cheng G, Sun M, Wu Z, Liu G, Su D, Lan B, Mai S, Chen L, Yu L (2019) C-CoP hollow microporous nanocages based on phosphating regulation: a high-performance bifunctional electrocatalyst for overall water splitting. Nanoscale 11:17084–17092. https://doi.org/10.1039/c9nr05061b

    Article  CAS  PubMed  Google Scholar 

  20. Paul R, Zhu L, Chen H, Qu J, Dai L (2019) Recent advances in carbon-based metal-free electrocatalysts. Adv Mater 31:1–24. https://doi.org/10.1002/adma.201806403

    Article  CAS  Google Scholar 

  21. Kumar R, Ahmed Z, Rai R, Gaur A, Kumari S, Maruyama T, Bagchi V (2019) Uniformly decorated molybdenum carbide/nitride nanostructures on biomass templates for hydrogen evolution reaction applications. ACS Omega 4:14155–14161. https://doi.org/10.1021/acsomega.9b02321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Sheng M, Jiang B, Wu B, Liao F, Fan X, Lin H, Li Y, Lifshitz Y, Lee ST, Shao M (2019) Approaching the volcano top: iridium/silicon nanocomposites as efficient electrocatalysts for the hydrogen evolution reaction. ACS Nano 13:2786–2794. https://doi.org/10.1021/acsnano.8b07572

    Article  CAS  PubMed  Google Scholar 

  23. Ruqia B, Choi S (2018) Il Pt and Pt–Ni(OH)2 Electrodes for the hydrogen evolution reaction in alkaline electrolytes and their nanoscaled electrocatalysts. ChemSusChem 11:2643–2653. https://doi.org/10.1002/cssc.201800781

    Article  CAS  PubMed  Google Scholar 

  24. Danilovic N, Subbaraman R, Strmcnik D, Stamenkovic VR, Markovic NM (2013) Electrocatalysis of the HER in acid and alkaline media. J Serbian Chem Soc 78:2007–2015. https://doi.org/10.2298/JSC131118136D

    Article  CAS  Google Scholar 

  25. Mahmood N, Yao Y, Zhang JW, Pan L, Zhang X, Zou JJ (2018) Electrocatalysts for hydrogen evolution in alkaline electrolytes: mechanisms, challenges, and prospective solutions. Adv Sci 5. https://doi.org/10.1002/advs.201700464

  26. Strmcnik D, Lopes PP, Genorio B, Stamenkovic VR, Markovic NM (2016) Design principles for hydrogen evolution reaction catalyst materials. Nano Energy 29:29–36. https://doi.org/10.1016/j.nanoen.2016.04.017

    Article  CAS  Google Scholar 

  27. Li M, Duanmu K, Wan C, Cheng T, Zhang L, Dai S, Chen W, Zhao Z, Li P, Fei H et al (2019) Single-atom tailoring of platinum nanocatalysts for high-performance multifunctional electrocatalysis. Nat Catal 2:495–503. https://doi.org/10.1038/s41929-019-0279-6

    Article  CAS  Google Scholar 

  28. Xu H, Shang H, Wang C, Du Y (2020) Surface and interface engineering of noble-metal-free electrocatalysts for efficient overall water splitting. Coord Chem Rev 418:213374. https://doi.org/10.1016/j.ccr.2020.213374

    Article  CAS  Google Scholar 

  29. Zahra R, Pervaiz E, Yang M, Rabi O, Saleem Z, Ali M, Farrukh S (2020) A review on nickel cobalt sulphide and their hybrids: Earth abundant, pH stable electro-catalyst for hydrogen evolution reaction. Int J Hydrog Energy 45:24518–24543. https://doi.org/10.1016/j.ijhydene.2020.06.236

    Article  CAS  Google Scholar 

  30. Yan Y, Xia BY, Zhao B, Wang X (2016) A review on noble-metal-free bifunctional heterogeneous catalysts for overall electrochemical water splitting. J Mater Chem A 4:17587–17603. https://doi.org/10.1039/C6TA08075H

    Article  CAS  Google Scholar 

  31. Chemistry A European J, 2020, Yu - Earth-abundant transition-metal-based bifunctional electrocatalysts for overall water.pdf.

  32. Wang S, Lu A, Zhong CJ (2021) Hydrogen production from water electrolysis: role of catalysts. Nano Converg 8. https://doi.org/10.1186/s40580-021-00254-x

  33. Xu Y, Chai X, Liu M, Ren T, Yu S, Wang Z, Li X, Wang L, Wang H (2020) Two-dimensional NiIr@N-doped carbon nanocomposites supported on Ni foam for electrocatalytic overall water splitting. Chem - A Eur J 26:14496–14501. https://doi.org/10.1002/chem.202003473

    Article  CAS  Google Scholar 

  34. Zhang L, Jang H, Li Z, Liu H, Kim MG, Liu X, Cho J (2021) SrIrO3 modified with laminar Sr2IrO4 as a robust bifunctional electrocatalyst for overall water splitting in acidic media. Chem Eng J 419:129604. https://doi.org/10.1016/j.cej.2021.129604

    Article  CAS  Google Scholar 

  35. Tahir M, Pan L, Idrees F, Zhang X, Wang L, Zou JJ, Wang ZL (2017) Electrocatalytic oxygen evolution reaction for energy conversion and storage: a comprehensive review. Nano Energy 37:136–157. https://doi.org/10.1016/j.nanoen.2017.05.022

    Article  CAS  Google Scholar 

  36. Shinagawa T, Garcia-Esparza AT, Takanabe K (2015) Insight on Tafel slopes from a microkinetic analysis of aqueous electrocatalysis for energy conversion. Sci Rep 5. https://doi.org/10.1038/srep13801

  37. Wang M, Zhang L, He Y, Zhu H (2021) Recent advances in transition-metal-sulfide-based bifunctional electrocatalysts for overall water splitting. J Mater Chem A 9:5320–5363. https://doi.org/10.1039/d0ta12152e

    Article  CAS  Google Scholar 

  38. Zhang S, Zhang X, Shi X, Zhou F, Wang R, Li X (2020) Facile fabrication of ultrafine nickel-iridium alloy nanoparticles/graphene hybrid with enhanced mass activity and stability for overall water splitting. J Energy Chem 49:166–173. https://doi.org/10.1016/j.jechem.2020.02.022

    Article  Google Scholar 

  39. Sun H, Zhang W, Li JG, Li Z, Ao X, Xue KH, Ostrikov KK, Tang J, Wang C (2021) Rh-engineered ultrathin NiFe-LDH nanosheets enable highly-efficient overall water splitting and urea electrolysis. Appl Catal B Environ 284:119740. https://doi.org/10.1016/j.apcatb.2020.119740

    Article  CAS  Google Scholar 

  40. Kozuch S, Martin JML (2012) “Turning over” definitions in catalytic cycles. ACS Catal 2:2787–2794. https://doi.org/10.1021/cs3005264

    Article  CAS  Google Scholar 

  41. Liu H, Yan Z, Chen X, Li J, Zhang L, Liu F, Fan G, Cheng F (2020) Electrodeposition of Pt-decorated Ni(OH) 2 /CeO 2 hybrid as superior bifunctional electrocatalyst for water splitting. Research 2020:1–11. https://doi.org/10.34133/2020/9068270

    Article  CAS  Google Scholar 

  42. Advanced Materials, 2018, Zhu - Atomic-scale core shell structure engineering induces precise tensile strain to boost.pdf.

  43. Wang HF, Tang C, Zhang Q (2018) A review of precious-metal-free bifunctional oxygen electrocatalysts: rational design and applications in Zn−Air batteries. Adv Funct Mater 28. https://doi.org/10.1002/adfm.201803329

  44. Wang X, Kolen’Ko YV, Bao XQ, Kovnir K, Liu L (2015) One-step synthesis of self-supported nickel phosphide nanosheet array cathodes for efficient electrocatalytic hydrogen generation. Angew Chem Int Ed 54:8188–8192. https://doi.org/10.1002/anie.201502577

    Article  CAS  Google Scholar 

  45. Das D, Nanda KK (2016) One-step, integrated fabrication of Co2P nanoparticles encapsulated N, P dual-doped CNTs for highly advanced total water splitting. Nano Energy 30:303–311. https://doi.org/10.1016/j.nanoen.2016.10.024

    Article  CAS  Google Scholar 

  46. Chen X, Li D, Li Y, Zhan W, Huang C, Chen R, Wang W, Ni H, Chu PK (2022) Short-brush NiFeOxHy films and the Pt derivative as high-performance electrode materials for efficient electrocatalytic water splitting. Appl Surf Sci 574:151636. https://doi.org/10.1016/j.apsusc.2021.151636

    Article  CAS  Google Scholar 

  47. Diaz-Morales O, Raaijman S, Kortlever R, Kooyman PJ, Wezendonk T, Gascon J, Fu WT, Koper MTM (2016) Iridium-based double perovskites for efficient water oxidation in acid media. Nat Commun 7. https://doi.org/10.1038/ncomms12363

  48. Rao RR, Kolb MJ, Halck NB, Pedersen AF, Mehta A, You H, Stoerzinger KA, Feng Z, Hansen HA, Zhou H et al (2017) Towards identifying the active sites on RuO2(110) in catalyzing oxygen evolution. Energy Environ Sci 10:2626–2637. https://doi.org/10.1039/c7ee02307c

    Article  CAS  Google Scholar 

  49. Zhang X, Zhao Y, Zhao Y, Shi R, Waterhouse GIN, Zhang T (2019) A simple synthetic strategy toward defect-rich porous monolayer NiFe-layered double hydroxide nanosheets for efficient electrocatalytic water oxidation. Adv Energy Mater 9:1–7. https://doi.org/10.1002/aenm.201900881

    Article  CAS  Google Scholar 

  50. Yin S, Tu W, Sheng Y, Du Y, Kraft M, Borgna A, Xu R (2018) A highly efficient oxygen evolution catalyst consisting of interconnected nickel–iron-layered double hydroxide and carbon nanodomains. Adv Mater 30:1–9. https://doi.org/10.1002/adma.201705106

    Article  CAS  Google Scholar 

  51. Chen Z, Liu D, Gao Y, Zhao Y, Xiao W, Xu G, Ma T, Wu Z, Wang L (2022) Corrosive-coordinate engineering to construct 2D-3D nanostructure with trace Pt as efficient bifunctional electrocatalyst for overall water splitting. Sci China Mater 65:1217–1224. https://doi.org/10.1007/s40843-021-1943-5

    Article  CAS  Google Scholar 

  52. Yu J, Wang Q, O’Hare D, Sun L (2017) Preparation of two dimensional layered double hydroxide nanosheets and their applications. Chem Soc Rev 46:5950–5974. https://doi.org/10.1039/c7cs00318h

    Article  CAS  PubMed  Google Scholar 

  53. Pavel OD, Zǎvoianu R, Angelescu E (2016) The effect of modifying cations on the catalytic activity of hydrotalcite-like compounds in 1, 4-addition reactions. Rev Roum Chim 61:671–681

    Google Scholar 

  54. Long X, Wang Z, Xiao S, An Y, Yang S (2016) Transition metal based layered double hydroxides tailored for energy conversion and storage. Mater Today 19:213–226. https://doi.org/10.1016/j.mattod.2015.10.006

    Article  CAS  Google Scholar 

  55. Wang Z, Long X, Yang S (2018) Effects of metal combinations on the electrocatalytic properties of transition-metal-based layered double hydroxides for water oxidation: a perspective with insights. ACS Omega 3:16529–16541. https://doi.org/10.1021/acsomega.8b02565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Luis, F.; Moncayo, G. No 主観的健康感を中心とした在宅高齢者における 健康関連指標に関する共分散構造分析Title.

  57. Feng Y, Li Z, Li S, Yang M, Ma R, Wang J (2022) One stone two birds: vanadium doping as dual roles in self-reduced Pt clusters and accelerated water splitting. J Energy Chem 66:493–501. https://doi.org/10.1016/j.jechem.2021.08.061

    Article  CAS  Google Scholar 

  58. Yin D, Cao YD, Chai DF, Fan LL, Gao GG, Wang ML, Liu H, Kang Z (2022) A WOx mediated interface boosts the activity and stability of Pt-catalyst for alkaline water splitting. Chem Eng J 431:133287. https://doi.org/10.1016/j.cej.2021.133287

    Article  CAS  Google Scholar 

  59. Tran DT, Le HT, Luyen Doan TL, Kim NH, Lee JH (2019) Pt nanodots monolayer modified mesoporous Cu@Cu x O nanowires for improved overall water splitting reactivity. Nano Energy 59:216–228. https://doi.org/10.1016/j.nanoen.2019.02.050

    Article  CAS  Google Scholar 

  60. Yu X, Guo J, Li B, Xu J, Gao P, Hui KS, Hui KN, Shao H (2021) Sub-nanometer Pt clusters on defective NiFe LDH nanosheets as trifunctional electrocatalysts for water splitting and rechargeable hybrid sodium-air batteries. ACS Appl Mater Interfaces 13:26891–26903. https://doi.org/10.1021/acsami.1c03337

    Article  CAS  PubMed  Google Scholar 

  61. Anantharaj S, Karthick K, Venkatesh M, Simha TVSV, Salunke AS, Ma L, Liang H, Kundu S (2017) Enhancing electrocatalytic total water splitting at few layer Pt-NiFe layered double hydroxide interfaces. Nano Energy 39:30–43. https://doi.org/10.1016/j.nanoen.2017.06.027

    Article  CAS  Google Scholar 

  62. Jeong S, Mai HD, Nam KH, Park CM, Jeon KJ (2022) Self-healing graphene-templated platinum-nickel oxide heterostructures for overall water splitting. ACS Nano 16:930–938. https://doi.org/10.1021/acsnano.1c08506

    Article  CAS  PubMed  Google Scholar 

  63. Yan Q, Yan P, Wei T, Wang G, Cheng K, Ye K, Zhu K, Yan J, Cao D, Li Y (2019) A highly efficient and durable water splitting system: platinum sub-nanocluster functionalized nickel-iron layered double hydroxide as the cathode and hierarchical nickel-iron selenide as the anode. J Mater Chem A 7:2831–2837. https://doi.org/10.1039/c8ta10789k

    Article  CAS  Google Scholar 

  64. Zheng X, Cao Y, Han X, Liu H, Wang J, Zhang Z, Wu X, Zhong C, Hu W, Deng Y (2019) Pt embedded Ni3Se2@NiOOH core-shell dendrite-like nanoarrays on nickel as bifunctional electrocatalysts for overall water splitting. Sci China Mater 62:1096–1104. https://doi.org/10.1007/s40843-019-9413-5

    Article  CAS  Google Scholar 

  65. Fu M, Zhang Q, Sun Y, Ning G, Fan X, Wang H, Lu H, Zhang Y, Wang H (2020) Ni–Fe nanocubes embedded with Pt nanoparticles for hydrogen and oxygen evolution reactions. Int J Hydrog Energy 45:20832–20842. https://doi.org/10.1016/j.ijhydene.2020.05.170

    Article  CAS  Google Scholar 

  66. Li C, Xu Y, Yang D, Qian X, Chai X, Wang Z, Li X, Wang L, Wang H (2019) Boosting electrocatalytic activities of Pt-based mesoporous nanoparticles for overall water splitting by a facile Ni, P co-incorporation strategy. ACS Sustain Chem Eng 7:9709–9716. https://doi.org/10.1021/acssuschemeng.9b01484

    Article  CAS  Google Scholar 

  67. Guan Y, Liu Y (2021) Pt modified Ni-Mo-based hydrates as bifunctional electrocatalysts for overall water splitting. New J Chem 45:16313–16318. https://doi.org/10.1039/d1nj02046c

    Article  CAS  Google Scholar 

  68. Xu W, Chang J, Cheng Y, Liu H, Li J, Ai Y, Hu Z, Zhang X, Wang Y, Liang Q et al (2022) A multi-step induced strategy to fabricate core-shell Pt-Ni alloy as symmetric electrocatalysts for overall water splitting. Nano Res 15:965–971. https://doi.org/10.1007/s12274-021-3582-x

    Article  CAS  Google Scholar 

  69. Zhao Y, Gao Y, Chen Z, Li Z, Ma T, Wu Z, Wang L (2021) Trifle Pt coupled with NiFe hydroxide synthesized via corrosion engineering to boost the cleavage of water molecule for alkaline water-splitting. Appl Catal B Environ 297:120395. https://doi.org/10.1016/j.apcatb.2021.120395

    Article  CAS  Google Scholar 

  70. Ye B, Jiang R, Yu Z, Hou Y, Huang J, Zhang B, Huang Y, Zhang Y, Zhang R (2019) Pt (1 1 1) quantum dot engineered Fe-MOF nanosheet arrays with porous core-shell as an electrocatalyst for efficient overall water splitting. J Catal 380:307–317. https://doi.org/10.1016/j.jcat.2019.09.038

    Article  CAS  Google Scholar 

  71. Zhang H, Liu Y, Wu H, Zhou W, Kou Z, Pennycook SJ, Xie J, Guan C, Wang J (2018) Open hollow Co-Pt clusters embedded in carbon nanoflake arrays for highly efficient alkaline water splitting. J Mater Chem A 6:20214–20223. https://doi.org/10.1039/c8ta07101b

    Article  CAS  Google Scholar 

  72. Chen J, Wang J, Chen J, Wang L (2017) A bifunctional electrocatalyst of PtNi nanoparticles immobilized on three-dimensional carbon nanofiber mats for efficient and stable water splitting in both acid and basic media. J Mater Sci 52:13064–13077. https://doi.org/10.1007/s10853-017-1410-1

    Article  CAS  Google Scholar 

  73. Lu S, Zhu K, Fan D, Hu X (2022) A novel PdC monolayer with fully dispersed Pd atoms and a rigid carbon backbone: an intrinsic versatile electrocatalyst for overall water splitting and the corresponding reverse reaction. Phys Chem Chem Phys 24:6811–6819. https://doi.org/10.1039/d1cp05392b

    Article  CAS  PubMed  Google Scholar 

  74. Electroanalysis, 2020, Ipadeola - Bifunctional behavior of Pd Ni nanocatalysts on MOF-derived carbons for alkaline (1).pdf.

  75. Ipadeola AK, Ozoemena KI (2020) Alkaline water-splitting reactions over Pd/Co-MOF-derived carbon obtainedviamicrowave-assisted synthesis. RSC Adv 10:17359–17368. https://doi.org/10.1039/d0ra02307h

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zhang H, Jiang Q, Hadden JHL, Xie F, Riley DJ (2021) Pd ion-exchange and ammonia etching of a Prussian blue analogue to produce a high-performance water-splitting catalyst. Adv Funct Mater 31. https://doi.org/10.1002/adfm.202008989

  77. Karuppasamy L, Gurusamy L, Anandan S, Liu CH, Wu JJ (2022) Defect-enriched heterointerfaces N–MoO2–Mo2C supported Pd nanocomposite as a novel multifunctional electrocatalyst for oxygen reduction reaction and overall water splitting. Mater Today Chem 24. https://doi.org/10.1016/j.mtchem.2022.100799

  78. Zhang W, Jiang X, Dong Z, Wang J, Zhang N, Liu J, Xu GR, Wang L (2021) Porous Pd/NiFeOx nanosheets enhance the pH-universal overall water splitting. Adv Funct Mater 31:1–11. https://doi.org/10.1002/adfm.202107181

    Article  CAS  Google Scholar 

  79. Luo F, Zhang Q, Yu X, Xiao S, Ling Y, Hu H, Guo L, Yang Z, Huang L, Cai W et al (2018) Palladium phosphide as a stable and efficient electrocatalyst for overall water splitting. Angew Chem Int Ed 57:14862–14867. https://doi.org/10.1002/anie.201810102

    Article  CAS  Google Scholar 

  80. Butenko DS, Li S, Kotsyubynsky VO, Boychuk VM, Dubinko VI, Kolkovsky PI, Liedienov NA, Klyui NI, Han W, Zatovsky IV (2021) Palladium nanoparticles embedded in microporous carbon as electrocatalysts for water splitting in alkaline media. Int J Hydrog Energy 46:21462–21474. https://doi.org/10.1016/j.ijhydene.2021.03.242

    Article  CAS  Google Scholar 

  81. Qin Q, Jang H, Chen L, Li P, Wei T, Liu X, Cho J (2019) Coupling a low loading of IrP 2 , PtP 2 , or Pd 3 P with heteroatom-doped nanocarbon for overall water-splitting cells and zinc-air batteries. ACS Appl Mater Interfaces 11:16461–16473. https://doi.org/10.1021/acsami.8b21155

    Article  CAS  PubMed  Google Scholar 

  82. Pandey A, Mukherjee A, Chakrabarty S, Chanda D, Basu S (2019) Interface engineering of an RGO/MoS2/Pd 2D heterostructure for electrocatalytic overall water splitting in alkaline medium. ACS Appl Mater Interfaces 11:42094–42103. https://doi.org/10.1021/acsami.9b13358

    Article  CAS  PubMed  Google Scholar 

  83. Guo J, Sun J, Sun Y, Liu Q, Zhang X (2019) Electrodepositing Pd on NiFe layered double hydroxide for improved water electrolysis. Mater Chem Front 3:842–850. https://doi.org/10.1039/c9qm00052f

    Article  CAS  Google Scholar 

  84. Kaushik P, Kaur G, Ram Chaudhary G, Batra U (2021) Cleaner way for overall water splitting reaction by using palladium and cobalt based nanocomposites prepared from mixed metallosurfactants. Appl Surf Sci 556:149769. https://doi.org/10.1016/j.apsusc.2021.149769

    Article  CAS  Google Scholar 

  85. Duan, H.; Li, D.; Tang, Y.; He, Y.; Wang, R.; Lv, H.; Lopes, P.P.; Paulikas, A.P.; Li, H.; Mao, S.X.; et al. 4-Duan2017.Pdf. 2017.

    Google Scholar 

  86. Qin Q, Jang H, Chen L, Nam G, Liu X, Cho J (2018) Low loading of RhxP and RuP on N, P codoped carbon as two trifunctional electrocatalysts for the oxygen and hydrogen electrode reactions. Adv Energy Mater 8:1–12. https://doi.org/10.1002/aenm.201801478

    Article  CAS  Google Scholar 

  87. Cao D, Xu H, Cheng D (2020) Construction of defect-rich RhCu nanotubes with highly active Rh3Cu1 alloy phase for overall water splitting in all pH values. Adv Energy Mater 10:1–12. https://doi.org/10.1002/aenm.201903038

    Article  CAS  Google Scholar 

  88. Wu X, Wang R, Li W, Feng B, Hu W (2021) Rh2P nanoparticles partially embedded in N/P-doped carbon scaffold at ultralow metal loading for high current density water electrolysis. ACS Appl Nano Mater 4:2–9. https://doi.org/10.1021/acsanm.0c03126

    Article  CAS  Google Scholar 

  89. Narwade SS, Mali SM, Sapner VS, Sathe BR (2020) Graphene oxide decorated with Rh nanospheres for electrocatalytic water splitting. ACS Appl Nano Mater 3:12288–12296. https://doi.org/10.1021/acsanm.0c02762

    Article  CAS  Google Scholar 

  90. Zhao J, Zhang W, Zhang J, Chen X, Wu Y, Li C, Zhang X, Yang F (2020) The electropositive environment of Rh in Rh1Sn2/SWNTs for boosting trifunctional electrocatalysis. Int J Hydrog Energy 45:32050–32058. https://doi.org/10.1016/j.ijhydene.2020.08.283

    Article  CAS  Google Scholar 

  91. Zhang W, Zhao J, Zhang J, Chen X, Zhang X, Yang F (2020) Electronic asymmetric distribution of RhCu bimetallic nanocrystals for enhancing trifunctional electrocatalysis. ACS Appl Mater Interfaces 12:10299–10306. https://doi.org/10.1021/acsami.9b19980

    Article  CAS  PubMed  Google Scholar 

  92. Zhang B, Zhu C, Wu Z, Stavitski E, Lui YH, Kim TH, Liu H, Huang L, Luan X, Zhou L et al (2020) Integrating Rh species with NiFe-layered double hydroxide for overall water splitting. Nano Lett 20:136–144. https://doi.org/10.1021/acs.nanolett.9b03460

    Article  CAS  PubMed  Google Scholar 

  93. Zhu K, Chen J, Wang W, Liao J, Dong J, Chee MOL, Wang N, Dong P, Ajayan PM, Gao S et al (2020) Etching-doping sedimentation equilibrium strategy: accelerating kinetics on hollow Rh-doped CoFe-layered double hydroxides for water splitting. Adv Funct Mater 30:1–10. https://doi.org/10.1002/adfm.202003556

    Article  CAS  Google Scholar 

  94. Jiang X, Dong Z, Wang J, Zhang N, Xu GR, Zhang W, Lai J, Li Z, Wang L (2021) Self-assembly of functionalized Echinops-like Rh porous nanostructure electrocatalysts for highly efficient seawater splitting. J Mater Chem C 9:8314–8322. https://doi.org/10.1039/d1tc01722e

    Article  CAS  Google Scholar 

  95. Chen MT, Duan JJ, Feng JJ, Mei LP, Jiao Y, Zhang L, Wang AJ (2022) Iron, rhodium-codoped Ni2P nanosheets arrays supported on nickel foam as an efficient bifunctional electrocatalyst for overall water splitting. J Colloid Interface Sci 605:888–896. https://doi.org/10.1016/j.jcis.2021.07.101

    Article  CAS  PubMed  Google Scholar 

  96. Fan R, Mu Q, Wei Z, Peng Y, Shen M (2020) Atomic Ir-doped NiCo layered double hydroxide as a bifunctional electrocatalyst for highly efficient and durable water splitting. J Mater Chem A 8:9871–9881. https://doi.org/10.1039/d0ta03272g

    Article  CAS  Google Scholar 

  97. Gao W, Xu Q, Wang Z, Wang M, Ren X, Yuan G, Wang Q (2020) Self-assembly of homointerface engineered IrCo0.14 bracelet-like nanorings as efficient and stable bifunctional catalysts for electrochemical water splitting in acidic media. Electrochim Acta 337:135738. https://doi.org/10.1016/j.electacta.2020.135738

    Article  CAS  Google Scholar 

  98. Chen J, Wang Y, Qian G, Yu T, Wang Z, Luo L, Shen F, Yin S (2021) In situ growth of volcano-like FeIr alloy on nickel foam as efficient bifunctional catalyst for overall water splitting at high current density. Chem Eng J 421:129892. https://doi.org/10.1016/j.cej.2021.129892

    Article  CAS  Google Scholar 

  99. Feng Q, Wang Q, Zhang Z, Xiong Y, Li H, Yao Y, Yuan XZ, Williams MC, Gu M, Chen H et al (2019) Highly active and stable ruthenate pyrochlore for enhanced oxygen evolution reaction in acidic medium electrolysis. Appl Catal B Environ 244:494–501. https://doi.org/10.1016/j.apcatb.2018.11.071

    Article  CAS  Google Scholar 

  100. Wang W, Kuai L, Cao W, Huttula M, Ollikkala S, Ahopelto T, Honkanen AP, Huotari S, Yu M, Geng B (2017) Mass-production of mesoporous MnCo2O4 spinels with manganese(IV)- and cobalt(II)-rich surfaces for superior bifunctional oxygen electrocatalysis. Angew Chem Int Ed 56:14977–14981. https://doi.org/10.1002/anie.201708765

    Article  CAS  Google Scholar 

  101. Zhang G, Lan ZA, Lin L, Lin S, Wang X (2016) Overall water splitting by Pt/g-C3N4 photocatalysts without using sacrificial agents. Chem Sci 7:3062–3066. https://doi.org/10.1039/c5sc04572j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Yang L, Chen H, Shi L, Li X, Chu X, Chen W, Li N, Zou X (2019) Enhanced iridium mass activity of 6H-phase, Ir-based perovskite with nonprecious incorporation for acidic oxygen evolution electrocatalysis. ACS Appl Mater Interfaces 11:42006–42013. https://doi.org/10.1021/acsami.9b11287

    Article  CAS  PubMed  Google Scholar 

  103. Tsai H, Nie W, Blancon JC, Stoumpos CC, Asadpour R, Harutyunyan B, Neukirch AJ, Verduzco R, Crochet JJ, Tretiak S et al (2016) High-efficiency two-dimensional ruddlesden-popper perovskite solar cells. Nature 536:312–317. https://doi.org/10.1038/nature18306

    Article  CAS  PubMed  Google Scholar 

  104. Fu L, Hu X, Li Y, Cheng G, Luo W (2019) IrW nanobranches as an advanced electrocatalyst for pH-universal overall water splitting. Nanoscale 11:8898–8905. https://doi.org/10.1039/c9nr01690b

    Article  CAS  PubMed  Google Scholar 

  105. Wu W, Liu J, Johannes N (2021) Electrodeposition of Ir–Co thin films on copper foam as high-performance electrocatalysts for efficient water splitting in alkaline medium. Int J Hydrog Energy 46:609–621. https://doi.org/10.1016/j.ijhydene.2020.09.268

    Article  CAS  Google Scholar 

  106. Zhang J, Wang G, Liao Z, Zhang P, Wang F, Zhuang X, Zschech E, Feng X (2017) Iridium nanoparticles anchored on 3D graphite foam as a bifunctional electrocatalyst for excellent overall water splitting in acidic solution. Nano Energy 40:27–33. https://doi.org/10.1016/j.nanoen.2017.07.054

    Article  CAS  Google Scholar 

  107. Xie Y, Long X, Li X, Chang C, Qu K, Yang Z (2021) The template synthesis of ultrathin metallic Ir nanosheets as a robust electrocatalyst for acidic water splitting. Chem Commun 57:8620–8623. https://doi.org/10.1039/d1cc02349g

    Article  CAS  Google Scholar 

  108. Pedireddy S, Jimenez-Sandoval R, Ravva MK, Nayak C, Anjum DH, Jha SN, Katuri KP, Saikaly PE (2021) Harnessing the extracellular electron transfer capability of geobacter sulfurreducens for ambient synthesis of stable bifunctional single-atom electrocatalyst for water splitting. Adv Funct Mater 31:1–10. https://doi.org/10.1002/adfm.202010916

    Article  CAS  Google Scholar 

  109. Luo F, Guo L, Xie Y, Xu J, Qu K, Yang Z (2020) Iridium nanorods as a robust and stable bifunctional electrocatalyst for pH-universal water splitting. Appl Catal B Environ 279:119394. https://doi.org/10.1016/j.apcatb.2020.119394

    Article  CAS  Google Scholar 

  110. Ren Z, Jin L, Deng L, Ming R, Zhang A, Zhou X, Chai B, Zhu Y (2019) A silicon-doped iridium electrode prepared by magnetron-sputtering as an advanced electrocatalyst for overall water splitting in acidic media. Sustain Energy Fuels 3:2321–2328. https://doi.org/10.1039/c9se00250b

    Article  CAS  Google Scholar 

  111. Wang H, Chen ZN, Wu D, Cao M, Sun F, Zhang H, You H, Zhuang W, Cao R (2021) Significantly enhanced overall water splitting performance by partial oxidation of Ir through Au modification in core-shell alloy structure. J Am Chem Soc 143:4639–4645. https://doi.org/10.1021/jacs.0c12740

    Article  CAS  PubMed  Google Scholar 

  112. Kim Y, Yu A, Lee Y (2021) Iridium-cobalt alloy nanotubes as a bifunctional electrocatalyst for pH-universal overall water splitting. Bull Korean Chem Soc 42:1524–1533. https://doi.org/10.1002/bkcs.12382

    Article  CAS  Google Scholar 

  113. Hu H, Kazim FMD, Ye Z, Xie Y, Zhang Q, Qu K, Xu J, Cai W, Xiao S, Yang Z (2020) Electronically delocalized Ir enables efficient and stable acidic water splitting. J Mater Chem A 8:20168–20174. https://doi.org/10.1039/d0ta07416k

    Article  CAS  Google Scholar 

  114. Li X, Xue W, Mo R, Yang S, Li H, Zhong J (2019) In situ growth of minimal Ir-incorporated CoxNi1-xO nanowire arrays on Ni foam with improved electrocatalytic activity for overall water splitting. Chin J Catal 40:1576–1584. https://doi.org/10.1016/S1872-2067(19)63414-5

    Article  CAS  Google Scholar 

  115. Ren Z, Wang Y, Jiang H, Jiang H, Tian M, Liu Y, Han J, Fang H, Zhu Y (2022) A novel bifunctional catalyst for overall water electrolysis: nano Ir: XMn(1- x)oyhybrids with L12-IrMn3phase. Chem Commun 58:685–688. https://doi.org/10.1039/d1cc06062g

    Article  CAS  Google Scholar 

  116. Zhang Z, Xia Y, Ye M, Wen D, Zhang W, Peng W, Tian L, Hu W (2022) Low Ir-content Ir/Fe@NCNT bifunctional catalyst for efficient water splitting. Int J Hydrog Energy 47:13371–13385. https://doi.org/10.1016/j.ijhydene.2022.02.078

    Article  CAS  Google Scholar 

  117. Wu X, Feng B, Li W, Niu Y, Yu Y, Lu S, Zhong C, Liu P, Tian Z, Chen L et al (2019) Metal-support interaction boosted electrocatalysis of ultrasmall iridium nanoparticles supported on nitrogen doped graphene for highly efficient water electrolysis in acidic and alkaline media. Nano Energy 62:117–126. https://doi.org/10.1016/j.nanoen.2019.05.034

    Article  CAS  Google Scholar 

  118. Yi L, Feng B, Chen N, Li W, Li J, Fang C, Yao Y, Hu W (2021) Electronic interaction boosted electrocatalysis of iridium nanoparticles on nitrogen-doped graphene for efficient overall water splitting in acidic and alkaline media. Chem Eng J 415:129034. https://doi.org/10.1016/j.cej.2021.129034

    Article  CAS  Google Scholar 

  119. Yao W, Jiang X, Li Y, Zhao C, Ding L, Sun D, Tang Y (2021) N-doped graphene anchored ultrasmall Ir nanoparticles as bifunctional electrocatalyst for overall water splitting. Green. Energy Environ:1–8. https://doi.org/10.1016/j.gee.2021.01.011

  120. Luo F, Hu H, Zhao X, Yang Z, Zhang Q, Xu J, Kaneko T, Yoshida Y, Zhu C, Cai W (2020) Robust and stable acidic overall water splitting on Ir single atoms. Nano Lett 20:2120–2128. https://doi.org/10.1021/acs.nanolett.0c00127

    Article  CAS  PubMed  Google Scholar 

  121. Huang B, Ma Y, Xiong Z, Xiao Z, Wu P, Jiang P, Liang M (2021) Polyoxometalate-derived Ir/WOx/rGO nanocomposites for enhanced electrocatalytic water splitting. Energy Environ Mater 4:681–686. https://doi.org/10.1002/eem2.12150

    Article  CAS  Google Scholar 

  122. Reier T, Oezaslan M, Strasser P (2012) Electrocatalytic oxygen evolution reaction (OER) on Ru, Ir, and pt catalysts: a comparative study of nanoparticles and bulk materials. ACS Catal 2:1765–1772. https://doi.org/10.1021/cs3003098

    Article  CAS  Google Scholar 

  123. Cen J, Shen PK, Zeng Y (2022) Ru doping NiCoP hetero-nanowires with modulated electronic structure for efficient overall water splitting. J Colloid Interface Sci 610:213–220. https://doi.org/10.1016/j.jcis.2021.12.028

    Article  CAS  PubMed  Google Scholar 

  124. Maiti A, Srivastava SK (2021) Ru-doped CuO/MoS2nanostructures as bifunctional water-splitting electrocatalysts in alkaline media. ACS Appl Nano Mater 4:7675–7685. https://doi.org/10.1021/acsanm.1c00791

    Article  CAS  Google Scholar 

  125. Yan S, Liao W, Zhong M, Li W, Wang C, Pinna N, Chen W, Lu X (2022) Partially oxidized ruthenium aerogel as highly active bifunctional electrocatalyst for overall water splitting in both alkaline and acidic media. Appl Catal B Environ 307:121199. https://doi.org/10.1016/j.apcatb.2022.121199

    Article  CAS  Google Scholar 

  126. Yang B, Du Y, Shao M, Bin D, Zhao Q, Xu Y, Liu B, Lu H (2022) MOF-derived RuCoP nanoparticles-embedded nitrogen-doped polyhedron carbon composite for enhanced water splitting in alkaline media. J Colloid Interface Sci 616:803–812. https://doi.org/10.1016/j.jcis.2022.02.119

    Article  CAS  PubMed  Google Scholar 

  127. Cen J, Jiang E, Zhu Y, Chen Z, Tsiakaras P, Shen PK (2021) Enhanced electrocatalytic overall water splitting over novel one-pot synthesized Ru–MoO3-x and Fe3O4–NiFe layered double hydroxide on Ni foam. Renew Energy 177:1346–1355. https://doi.org/10.1016/j.renene.2021.06.005

    Article  CAS  Google Scholar 

  128. Pei Y, Guo S, Ju Q, Li Z, Zhuang P, Ma R, Hu Y, Zhu Y, Yang M, Zhou Y et al (2020) Interface engineering with ultralow ruthenium loading for efficient water splitting. ACS Appl Mater Interfaces 12:36177–36185. https://doi.org/10.1021/acsami.0c09593

    Article  CAS  PubMed  Google Scholar 

  129. Zhang J, Zhao Z, Wang R, Du P, He X, Zhang X, Yang J, Liu W, Huang K, Pan X et al (2021) Molten-salt thermosynthesis of amorphous RuCoFe nanosheets as bifunctional catalysts for electrochemical water splitting. Appl Phys A Mater Sci Process 127:1–7. https://doi.org/10.1007/s00339-021-04756-7

    Article  CAS  Google Scholar 

  130. Yang K, Xu P, Lin Z, Yang Y, Jiang P, Wang C, Liu S, Gong S, Hu L, Chen Q (2018) Ultrasmall Ru/Cu-doped RuO2 complex embedded in amorphous carbon skeleton as highly active bifunctional electrocatalysts for overall water splitting. Small 14:1–10. https://doi.org/10.1002/smll.201803009

    Article  CAS  Google Scholar 

  131. Wu D, Chen D, Zhu J, Mu S (2021) Ultralow Ru incorporated amorphous cobalt-based oxides for high-current-density overall water splitting in alkaline and seawater media. Small 17:1–9. https://doi.org/10.1002/smll.202102777

    Article  CAS  Google Scholar 

  132. Tuo Y, Liu W, Chen C, Lu Q, Zhou Y, Zhang J (2021) Constructing RuCoOx/NC nanosheets with low crystallinity within ZIF-9 as bifunctional catalysts for highly efficient overall water splitting. Chem - An Asian J 16:2511–2519. https://doi.org/10.1002/asia.202100629

    Article  CAS  Google Scholar 

  133. Liu J, Zheng Y, Jiao Y, Wang Z, Lu Z, Vasileff A, Qiao SZ (2018) NiO as a bifunctional promoter for RuO2 toward superior overall water splitting. Small 14:1–10. https://doi.org/10.1002/smll.201704073

    Article  CAS  Google Scholar 

  134. Fan Z, Jiang J, Ai L, Shao Z, Liu S (2019) Rational design of ruthenium and cobalt-based composites with rich metal-insulator interfaces for efficient and stable overall water splitting in acidic electrolyte. ACS Appl Mater Interfaces 11:47894–47903. https://doi.org/10.1021/acsami.9b15844

    Article  CAS  PubMed  Google Scholar 

  135. Yao Q, Huang B, Zhang N, Sun M, Shao Q, Huang X (2019) Channel-rich RuCu nanosheets for pH-universal overall water splitting electrocatalysis. Angew Chem Int Ed 58:13983–13988. https://doi.org/10.1002/anie.201908092

    Article  CAS  Google Scholar 

  136. Xue Y, Yan Q, Bai X, Xu Y, Zhang X, Li Y, Zhu K, Ye K, Yan J, Cao D et al (2022) Ruthenium-nickel-cobalt alloy nanoparticles embedded in hollow carbon microtubes as a bifunctional mosaic catalyst for overall water splitting. J Colloid Interface Sci 612:710–721. https://doi.org/10.1016/j.jcis.2022.01.001

    Article  CAS  PubMed  Google Scholar 

  137. Zhao M, Li H, Li W, Li J, Yi L, Hu W, Li CM (2020) Ru-doping enhanced electrocatalysis of metal–organic framework nanosheets toward overall water splitting. Chem - A Eur J 26:17091–17096. https://doi.org/10.1002/chem.202002072

    Article  CAS  Google Scholar 

  138. Wang D, Chen Y, Fan L, Xiao T, Meng T, Xing Z, Yang X (2022) Bulk and surface dual modification of nickel-cobalt spinel with ruthenium toward highly efficient overall water splitting. Appl Catal B Environ 305:121081. https://doi.org/10.1016/j.apcatb.2022.121081

    Article  CAS  Google Scholar 

  139. Wu Y, Yao R, Zhao Q, Li J, Liu G (2022) La-RuO2 nanocrystals with efficient electrocatalytic activity for overall water splitting in acidic media: synergistic effect of La doping and oxygen vacancy. Chem Eng J 439:135699. https://doi.org/10.1016/j.cej.2022.135699

    Article  CAS  Google Scholar 

  140. Zhang J, Lian J, Jiang Q, Wang G (2022) Boosting the OER/ORR/HER activity of Ru-doped Ni/Co oxides heterostructure. Chem Eng J 439:135634. https://doi.org/10.1016/j.cej.2022.135634

    Article  CAS  Google Scholar 

  141. Li W, Feng B, Yi L, Li J, Hu W (2021) Highly efficient alkaline water splitting with Ru-doped Co−V layered double hydroxide nanosheets as a bifunctional electrocatalyst. ChemSusChem 14:730–737. https://doi.org/10.1002/cssc.202002509

    Article  CAS  PubMed  Google Scholar 

  142. Ye L, Zhang Y, Guo B, Cao D, Gong Y (2021) Ru doping induces the construction of a unique core-shell microflower self-supporting electrocatalyst for highly efficient overall water splitting. Dalton Trans 50:13951–13960. https://doi.org/10.1039/d1dt02341a

    Article  CAS  PubMed  Google Scholar 

  143. Liu Z, Zha M, Wang Q, Hu G, Feng L (2020) Overall water-splitting reaction efficiently catalyzed by a novel bi-functional Ru/Ni3N-Ni electrode. Chem Commun 56:2352–2355. https://doi.org/10.1039/c9cc09187d

    Article  CAS  Google Scholar 

  144. Yang J, Shao Q, Huang B, Sun M, Huang X (2019) pH-universal water splitting catalyst: Ru-Ni nanosheet assemblies. iScience 11:492–504. https://doi.org/10.1016/j.isci.2019.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Liu H, Zhang R, Chen L, Wang L, Guo Y, Yang Y (2021) Synergistic coupling of nickel boride with Ru cluster as a highly active multifunctional electrocatalyst for overall water splitting and glucose electrolysis. Adv Sustain Syst 5:1–8. https://doi.org/10.1002/adsu.202000184

    Article  CAS  Google Scholar 

  146. Ai L, Wang Y, Luo Y, Tian Y, Yang S, Chen M, Jiang J (2022) Robust interfacial Ru-RuO2 heterostructures for highly efficient and ultrastable oxygen evolution reaction and overall water splitting in acidic media. J Alloys Compd 902:163787. https://doi.org/10.1016/j.jallcom.2022.163787

    Article  CAS  Google Scholar 

  147. Ding J, Shao Q, Feng Y, Huang X (2018) Ruthenium-nickel sandwiched nanoplates for efficient water splitting electrocatalysis. Nano Energy 47:1–7. https://doi.org/10.1016/j.nanoen.2018.02.017

    Article  CAS  Google Scholar 

  148. Fan Z, Liao F, Shi H, Liu Y, Shao M, Kang Z (2020) Highly efficient water splitting over a RuO2/F-doped graphene electrocatalyst with ultra-low ruthenium content. Inorg Chem Front 7:2188–2194. https://doi.org/10.1039/d0qi00095g

    Article  CAS  Google Scholar 

  149. Shan J, Guo C, Zhu Y, Chen S, Song L, Jaroniec M, Zheng Y, Qiao SZ (2019) Charge-redistribution-enhanced nanocrystalline Ru@IrOx electrocatalysts for oxygen evolution in acidic media. Chem 5:445–459. https://doi.org/10.1016/j.chempr.2018.11.010

    Article  CAS  Google Scholar 

  150. Wang J, Yang H, Li F, Li L, Wu J, Liu S, Cheng T, Xu Y, Shao Q, Huang X (2022) Single-site Pt-doped RuO 2 hollow nanospheres with interstitial C for high-performance acidic overall water splitting. Sci Adv 8:1–12. https://doi.org/10.1126/sciadv.abl9271

    Article  CAS  Google Scholar 

  151. Liu N, Zhang Y, Ma W, Zhang Z, Yin K, Si C, Kou T (2020) Hierarchically porous nickel-iridium-ruthenium-aluminum alloys with tunable compositions and electrocatalytic activities towards the oxygen/hydrogen evolution reaction in acid electrolyte. J Mater Chem A 8:6245–6255. https://doi.org/10.1039/d0ta00445f

    Article  CAS  Google Scholar 

  152. Sun Y, Huang B, Li Y, Xing Y, Luo M, Li N, Xia Z, Qin Y, Su D, Wang L et al (2019) Trifunctional fishbone-like PtCo/Ir enables high-performance zinc-air batteries to drive the water-splitting catalysis. Chem Mater 31:8136–8144. https://doi.org/10.1021/acs.chemmater.9b02892

    Article  CAS  Google Scholar 

  153. Hao S, Wang Y, Zheng G, Qiu L, Xu N, He Y, Lei L, Zhang X (2020) Tuning electronic correlations of ultra-small IrO2 nanoparticles with La and Pt for enhanced oxygen evolution performance and long-durable stability in acidic media. Appl Catal B Environ 266:1–8. https://doi.org/10.1016/j.apcatb.2020.118643

    Article  CAS  Google Scholar 

  154. Li M, Zhao Z, Xia Z, Luo M, Zhang Q, Qin Y, Tao L, Yin K, Chao Y, Gu L et al (2021) Exclusive strain effect boosts overall water splitting in PdCu/Ir core/shell nanocrystals. Angew Chem 133:8324–8331. https://doi.org/10.1002/ange.202016199

    Article  Google Scholar 

  155. Wang Y, Guo W, Zhu Z, Xu K, Zhang H, Wei W, Xiao X, Liang W, He M, Yu T et al (2022) Interfacial boron modification on mesoporous octahedral rhodium shell and its enhanced electrocatalysis for water splitting and oxygen reduction. Chem Eng J 435:134982. https://doi.org/10.1016/j.cej.2022.134982

    Article  CAS  Google Scholar 

  156. Qin Y, Wang Z, Yu W, Sun Y, Wang D, Lai J, Guo S, Wang L (2021) High valence M-incorporated PdCu nanoparticles (M = Ir, Rh, Ru) for water electrolysis in alkaline solution. Nano Lett 21:5774–5781. https://doi.org/10.1021/acs.nanolett.1c01581

    Article  CAS  PubMed  Google Scholar 

  157. Joo J, Jin H, Oh A, Kim B, Lee J, Baik H, Joo SH, Lee K (2018) An IrRu alloy nanocactus on Cu2-xS@IrSy as a highly efficient bifunctional electrocatalyst toward overall water splitting in acidic electrolytes. J Mater Chem A 6:16130–16138. https://doi.org/10.1039/c8ta04886j

    Article  CAS  Google Scholar 

  158. Lu Y, Huang K, Cao X, Zhang L, Wang T, Peng D, Zhang B, Liu Z, Wu J, Zhang Y et al (2022) Atomically dispersed intrinsic hollow sites of M-M1-M (M1 = Pt, Ir; M = Fe, Co, Ni, Cu, Pt, Ir) on FeCoNiCuPtIr nanocrystals enabling rapid water redox. Adv Funct Mater 2110645:1–9. https://doi.org/10.1002/adfm.202110645

    Article  CAS  Google Scholar 

Download references

Funding

AS gratefully acknowledges the UGC, New Delhi for their financial support under the BSR Mid-Career Award Scheme (No. F.19-214/2018).

Author information

Authors and Affiliations

Authors

Contributions

UA. Writing the manuscript, DP. Writing the manuscript, RS. Editing the manuscript and AS. and YC. Supervision, Editing and Reviewing the manuscript.

Corresponding author

Correspondence to Subramania Angaiah.

Ethics declarations

Ethical approval declaration

Not applicable.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Udayakumar, A., Dhandapani, P., Ramasamy, S. et al. Recent developments in noble metal–based hybrid electrocatalysts for overall water splitting. Ionics 30, 61–84 (2024). https://doi.org/10.1007/s11581-023-05269-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-023-05269-4

Keywords

Navigation