Skip to main content
Log in

Effects of LiCl template amount on structure, morphology, and electrochemical performance of porous Si@C anodes

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Porous silicon carbon (Si@C) has been regarded as a promising candidate to overcome volume change of silicon-based anodes. However, the relationship between pore size distribution and properties of porous Si@C materials is not clear. Herein, porous materials with different pore size structures are synthesized by adjusting the proportion of LiCl additives in the template, which is used to study the effect of pore size distribution on the properties of batteries. The results show that the porous Si@C prepared with the content of 10% LiCl templates has the perfect electrochemical comprehensive performance. In addition, we have utilized the density functional theory (DFT) calculation methods to further study the effect of carbon defects on the material properties.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Nitta N, Yushin G (2014) High-capacity anode materials for lithium-ion batteries: choice of elements and structures for active particles. Part Part Syst Charact 31:317–336

    Article  CAS  Google Scholar 

  2. Wang X, Tan G, Bai Y et al (2021) Multi-electron reaction materials for high-energy-density secondary batteries: current status and prospective. Electrochem Energy Rev 4:35–66

    Article  CAS  Google Scholar 

  3. Liu Y, Li W, Xia YG (2021) Recent progress in polyanionic anode materials for Li (Na)-ion batteries. Electrochem Energy Rev 4:447–472

    Article  CAS  Google Scholar 

  4. Casimir A, Zhang H, Ogoke O (2016) Silicon-based anodes for lithium-ion batteries: effectiveness of materials synthesis and electrode preparation. Nano Energy 27:359–376

    Article  CAS  Google Scholar 

  5. Lee SH, Lee JH, Nam D et al (2018) Epoxidized natural rubber/chitosan network binder for silicon anode in lithium-ion battery. ACS Appl Mater Inter 10:16449–16457

    Article  CAS  Google Scholar 

  6. McDowell M, Lee S, Ryu I et al (2011) Novel size and surface oxide effects in silicon nanowires as lithium battery anodes. Nano Lett 11:4018–4025

    Article  CAS  PubMed  Google Scholar 

  7. Szczech J, Jin S (2011) Nanostructured silicon for high capacity lithium battery anodes. Energy Environ Sci 4:56–72

    Article  CAS  Google Scholar 

  8. Liu W, Yuan JJ, Hao YC (2020) Heterogeneous structured MoSe2–MoO3 quantum dots with enhanced sodium/potassium storage. J Mater Chem A 8:23395–23403

    Article  CAS  Google Scholar 

  9. Li WB, Song QQ, Li M (2021) Chemical heterointerface engineering on hybrid electrode materials for electrochemical energy storage. Small Methods 8:2100444

    Article  CAS  Google Scholar 

  10. Zuo X, Zhu J, Müller-Busch Baum P et al (2017) Silicon based lithium-ion battery anodes: a chronicle perspective review. Nano Energy 31:113–143

    Article  CAS  Google Scholar 

  11. Shan H, Qin J, Ding YC (2021) Controllable heterojunctions with a semi coherent phase boundary boosting the potassium storage of CoSe2/FeSe2. Adv Mater 33:2102471

    Article  CAS  Google Scholar 

  12. Pan Q, Zhao J, Xing B et al (2019) A hierarchical porous architecture of silicon@TiO2 @carbon composite novel anode materials for high performance Li-ion batteries. New J Chem 43:15342–15350

    Article  CAS  Google Scholar 

  13. Li X, Meduri P, Chen X et al (2012) Hollow core–shell structured porous Si–C nanocomposites for Li-ion battery anodes. J Mater Chem 22:11014

    Article  CAS  Google Scholar 

  14. Yi Z, Qian Y, Cao C et al (2019) Porous Si/C microspheres decorated with stable outer carbon interphase and inner interpenetrated Si@C channels for enhanced lithium storage. Carbon 149:664–671

    Article  CAS  Google Scholar 

  15. Baasner A, Dörfler S, Piwko M et al (2018) Sulfur: an intermediate template for advanced silicon anode architectures. J Mater Chem A 6:14787–14796

    Article  CAS  Google Scholar 

  16. Shao T, Liu J, Gan L et al (2021) Yolk-shell Si@void@C composite with Chito-oligosaccharide as a C-N precursor for high capacity anode in lithium-ion batteries. J Phys Chem Solids 152:109965

    Article  CAS  Google Scholar 

  17. Ma J, Tan H, Liu H et al (2021) Facile and scalable synthesis of Si@void@C embedded in interconnected 3D porous carbon architecture for high performance lithium-ion batteries. Part Part Syst Charact 38:2000288

    Article  CAS  Google Scholar 

  18. Dong H, Fu XL, Wang J et al (2021) In-situ construction of porous Si@C composites with LiCl template to provide silicon anode expansion buffer. Carbon 173:687–695

    Article  CAS  Google Scholar 

  19. Kresse F (1996) Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys Rev B: Condens Matter 54:11169–11186

    Article  CAS  Google Scholar 

  20. Kresse G, Furthmüller J (1996) Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comp Mater Sci 6:15–50

    Article  CAS  Google Scholar 

  21. Monkhorst H, Pack J et al (1976) Special points for brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  22. Wang N, Wang Y, Xu X et al (2018) Defect sites-rich porous carbon with pseudocapacitive behaviors as an ultrafast and long-term cycling anode for sodium-ion batteries. ACS Appl Mater Inter 10:9353–9361

    Article  CAS  Google Scholar 

  23. Huo S, Song X, Zhao Y et al (2020) Insight into the significant contribution of intrinsic carbon defects for the high-performance capacitive desalination of brackish water. J Mater Chem A 8:19927–19937

    Article  CAS  Google Scholar 

  24. Hou L, Yang W, Jiang B et al (2021) Intrinsic defect-rich porous carbon nanosheets synthesized from potassium citrate toward advanced supercapacitors and microwave absorption. Carbon 183:176–186

    Article  CAS  Google Scholar 

  25. Hou L, Cao H, Han M et al (2020) Electrochemical performance of graphitic multi-walled carbon nanotubes with different aspect ratios as cathode materials for aluminum-ion batteries. ChemistryOpen 9:812–817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lai B, Bhattacharjee S, Huang Y et al (2020) Hydrogenation of high molecular weight bisphenol a type epoxy resin BE503 in a functional and greener solvent mixture using a Rh catalyst supported on carbon black. Polymers 12:2513

    Article  CAS  PubMed Central  Google Scholar 

  27. Li T, Zhong Y, Yan M et al (2019) Synergistic effect and characterization of graphene/carbon nanotubes/polyvinyl alcohol/sodium alginate nanofibrous membranes formed using continuous needleless dynamic linear electrospinning. Nanomaterials 9(5):714

    Article  PubMed Central  CAS  Google Scholar 

  28. Li Z, Zhang L, Zhang L et al (2019) ZIF-67-derived CoSe/NC composites as anode materials for lithium-ion batteries. Nanoscale Res Lett 14:358

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Yang Y, Qu X, Zhang L et al (2018) Reaction-ball-milling-driven surface coating strategy to suppress pulverization of microparticle Si anodes. ACS Appl Mater Inter 10:20591–20598

    Article  CAS  Google Scholar 

  30. Chen C, Sano T, Tsuda T et al (2016) In situ scanning electron microscopy of silicon anode reactions in lithium-ion batteries during charge/discharge processes. Sci Rep 6:36153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Son S, Cao L, Yoon T et al (2019) Interfacially induced cascading failure in graphite-silicon composite anodes. Adv Sci 6:1801007

    Article  CAS  Google Scholar 

  32. Dong H, Wang J, Wang P et al (2022) Effect of temperature on formation and evolution of solid electrolyte interphase on Si@Graphite@C anodes. J Energy Chem 64:190–200

    Article  Google Scholar 

  33. Liu J, Zhang Q, Zhang T et al (2015) A robust ion-conductive biopolymer as a binder for Si anodes of lithium-ion batteries. Adv Funct Mater 25:3599–3605

    Article  CAS  Google Scholar 

  34. Zhao D, Wang J, Lu H et al (2020) Tailoring interfacial architecture of high-voltage cathode with lithium difluoro(bisoxalato) phosphate for high energy density battery. J Power Sources 456:228006

    Article  CAS  Google Scholar 

  35. Song H, Jung Y, Lee K et al (1999) Electrochemical impedance spectroscopy of porous electrodes: the effect of pore size distribution. Electrochim Acta 44:3513–3519

    Article  CAS  Google Scholar 

  36. Yi Z, Lin N, Xu T et al (2018) TiO2 coated Si/C interconnected microsphere with stable framework and interface for high-rate lithium storage. Chem Eng J 347:214–222

    Article  CAS  Google Scholar 

  37. Jiang Z, Xia C, Chen F et al (2010) Efficient thickness of solid oxide fuel cell composite electrode. Chinese J Chem Phys 23:217–225

    Article  CAS  Google Scholar 

  38. Guo R, Lv C, Xu W et al (2020) Effect of intrinsic defects of carbon materials on the sodium storage performance. Adv Energy Mater 10:1903652

    Article  CAS  Google Scholar 

  39. Yao F, Güneş F, Ta H et al (2012) Diffusion mechanism of lithium ion through basal plane of layered graphene. J Am Chem Soc 134:8646–8654

    Article  CAS  PubMed  Google Scholar 

  40. Wang X, Liu H, Huttula M et al (2019) First-principles studies of lithium adsorption and diffusion on silicene with grain boundaries. Int J Quantum Chem 119:25913

    Article  CAS  Google Scholar 

  41. Fan X, Zheng W, Kuo J (2012) Adsorption and diffusion of Li on pristine and defective graphene. ACS Appl Mater Inter 4:2432–2438

    Article  CAS  Google Scholar 

  42. Seo D, Pineda S, Fang J et al (2018) Single-step ambient-air synthesis of graphene from renewable precursors as electrochemical genos ensor. Nat Commun 8:14217

    Article  CAS  Google Scholar 

  43. Wang D, Zhang W, Drewett NE et al (2018) Exploiting anti-T-shaped graphene architecture to form low tortuosity, sieve-like interfaces for high-performance anodes for Li-based cells. ACS Central Sci 4:81–88

    Article  CAS  Google Scholar 

  44. Tian H, Liu X, Dong L et al (2019) Enhanced hydrogenation performance over hollow structured Co-CoOx@N-C capsules. Adv Sci 6:1900807

    Article  CAS  Google Scholar 

  45. Zhou L, Hou Z, Wu L (2012) First-principles study of lithium adsorption and diffusion on graphene with point defects. J Phys Chem C 116:21780–21787

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by Gansu Provincial Department of Education: Industrial Support Program Project (2021CYZC-18), the Major Science and Technology Projects of Gansu Province (18ZD2FA012), and the Lanzhou University of Technology Hongliu First-class Discipline Construction Program, Education Department of Gansu Province: Excellent Graduate Student “Innovation Star” Project (2021CXZX-456).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiyou Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1477 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dong, H., Ding, H., Zhang, N. et al. Effects of LiCl template amount on structure, morphology, and electrochemical performance of porous Si@C anodes. Ionics 28, 2635–2648 (2022). https://doi.org/10.1007/s11581-022-04526-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-022-04526-2

Keywords

Navigation