Skip to main content

Advertisement

Log in

Construction of stable SEI film on Si@C high-loading electrodes by dimethoxydimethylsilane electrolyte additives

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Silicon (Si), with its high capacity and abundant resources, presents a huge application prospect for high-energy density lithium ion batteries. Unfortunately, continuous interface reactions induced by huge volumetric changes limit its wide application. Herein, we employ dimethoxydimethylsilane (DMDOS) as an additive to enhance the electrochemical performances in LiNi0.8Co0.15Al0.05O2(NCA)/Si@C pouch cell with high-loading electrodes. DMDOS can be decomposed preferentially and then create a dense layer of Si–O-Si cross-polymerized network on the electrode surface, mitigating continuous interface reactions of the electrolyte during long-term cycling. As a consequence, the pouch battery with 1% DMDOS renders an outstanding capacity retention of 85.5% over 100 cycles, whereas the pouch battery without DMDOS only shows a low capacity retention of 77.7%. Hence, DMDOS is an effective additive candidate for the development of high-energy density lithium ion batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Pham HQ, Lee HY, Hwang EH, Kwon YG, Song SW (2018) Non-flammable organic liquid electrolyte for high-safety and high-energy density Li-ion batteries. J Power Sources 404:13–19. https://doi.org/10.1016/j.jpowsour.2018.09.075

    Article  CAS  Google Scholar 

  2. Li P, Hwang JY, Sun YK (2019) Nano/microstructured silicon–graphite composite anode for high-energy-density Li-ion battery. ACS Nano 13:2624–2633. https://doi.org/10.1021/acsnano.9b00169

    Article  CAS  PubMed  Google Scholar 

  3. Jin Y, Kneusels NJH, Magusin PC, Kim G, Castillo-Martínez E, Marbella LE, Grey CP (2017) Identifying the structural basis for the increased stability of the solid electrolyte interphase formed on silicon with the additive fluoroethylene carbonate. J Am Chem Soc 139:14992–15004. https://doi.org/10.1021/jacs.7b06834

    Article  CAS  PubMed  Google Scholar 

  4. Son SB, Cao L, Yoon T, Cresce A, Hafner SE, Liu J, Ban C (2019) Interfacially induced cascading failure in graphite-silicon composite anodes. e Advanced Science 6:1801007. https://doi.org/10.1002/advs.201801007

    Article  CAS  Google Scholar 

  5. Ruther RE, Hays KA, An SJ, Li J, Wood DL, Nanda J (2018) Chemical evolution in silicon–graphite composite anodes investigated by vibrational spectroscopy. ACS Appl Mater Interfaces 10:18641–18649. https://doi.org/10.1021/acsami.8b02197

    Article  CAS  PubMed  Google Scholar 

  6. Zhu Y, Luo X, Zhi H, Liao Y, Xing L, Xu M, Li W (2018) Diethyl (thiophen-2-ylmethyl) phosphonate: a novel multifunctional electrolyte additive for high voltage batteries. Journal of Materials Chemistry A 6:10990–11004. https://doi.org/10.1039/C8TA01236A

    Article  CAS  Google Scholar 

  7. Suo L, Oh D, Lin Y, Zhuo Z, Borodin O, Gao T, Qi Y (2017) How solid-electrolyte interphase forms in aqueous electrolytes. J Am Chem Soc 139:18670–18680. https://doi.org/10.1021/jacs.7b10688

    Article  CAS  PubMed  Google Scholar 

  8. Wang H, Chew HB (2017) Nanoscale mechanics of the solid electrolyte interphase on lithiated-silicon electrodes. ACS Appl Mater Interfaces 9:25662–25667. https://doi.org/10.1021/acsami.7b07626

    Article  CAS  PubMed  Google Scholar 

  9. Soto FA, Ma Y, Martinez de la Hoz JM, Seminario JM, Balbuena PB (2015) Formation and growth mechanisms of solid-electrolyte interphase layers in rechargeable batteries. Chem Mater 27:7990–8000. https://doi.org/10.1021/acs.chemmater.5b03358

    Article  CAS  Google Scholar 

  10. Zhu G, Zhang F, Li X, Luo W, Li L, Zhang H, Dou SX (2019) Engineering the distribution of carbon in silicon oxide nanospheres at the atomic level for highly stable anodes. Angew Chem Int Ed 58:6669–6673. https://doi.org/10.1002/anie.201902083

    Article  CAS  Google Scholar 

  11. Aurbach DORON, Gamolsky KIRA, Markovsky B, Gofer Y, Schmidt M, Heider U (2002) On the use of vinylene carbonate (VC) as an additive to electrolyte solutions for Li-ion batteries. Electrochim Acta 47:1423–1439. https://doi.org/10.1016/S0013-4686(01)00858-1

    Article  CAS  Google Scholar 

  12. Wang K, Xing L, Zhi H, Cai Y, Yan Z, Cai D, Li W (2018) High stability graphite/electrolyte interface created by a novel electrolyte additive: a theoretical and experimental study. Electrochim Acta 262:226–232. https://doi.org/10.1016/j.electacta.2018.01.018

    Article  CAS  Google Scholar 

  13. Rezqita A, Sauer M, Foelske A, Kronberger H, Trifonova A (2017) The effect of electrolyte additives on electrochemical performance of silicon/mesoporous carbon (Si/MC) for anode materials for lithium-ion batteries. Electrochim Acta 247:600–609. https://doi.org/10.1016/j.electacta.2017.06.128

    Article  CAS  Google Scholar 

  14. Kennedy T, Brandon M, Laffir F, Ryan KM (2017) Understanding the influence of electrolyte additives on the electrochemical performance and morphology evolution of silicon nanowire based lithium-ion battery anodes. J Power Sources 359:601–610. https://doi.org/10.1016/j.jpowsour.2017.05.093

    Article  CAS  Google Scholar 

  15. Veith GM, Doucet M, Sacci RL, Vacaliuc B, Baldwin JK, Browning JF (2017) Determination of the solid electrolyte interphase structure grown on a silicon electrode using a fluoroethylene carbonate additive. Sci Rep 7:1–15. https://doi.org/10.1038/s41598-017-06555-8

    Article  CAS  Google Scholar 

  16. Xia Q, Wang B, Wu YP, Luo HJ, Zhao SY, Van Ree T (2008) Phenyl tris-2-methoxydiethoxy silane as an additive to PC-based electrolytes for lithium-ion batteries. J Power Sources 180:602–606. https://doi.org/10.1016/j.jpowsour.2008.01.039

    Article  CAS  Google Scholar 

  17. Li LL, Li L, Wang B, Liu LL, Wu YP, Van Ree T, Thavhiwa KA (2011) Methyl phenyl bis-methoxydiethoxysilane as bi-functional additive to propylene carbonate-based electrolyte for lithium ion batteries. Electrochim Acta 56:4858–4864. https://doi.org/10.1016/j.electacta.2011.02.117

    Article  CAS  Google Scholar 

  18. Schroeder G, Gierczyk B, Waszak D, Kopczyk M, Walkowiak M (2006) Vinyl tris-2-methoxyethoxy silane–a new class of film-forming electrolyte components for Li-ion cells with graphite anodes. Electrochem Commun 8:523–527. https://doi.org/10.1016/j.elecom.2006.01.021

    Article  CAS  Google Scholar 

  19. Yin YX, Xin S, Wan LJ, Li CJ, Guo YG (2011) Electrospray synthesis of silicon/carbon nanoporous microspheres as improved anode materials for lithium-ion batteries. The journal of physical chemistry C 115:14148–14154. https://doi.org/10.1021/jp204653y

    Article  CAS  Google Scholar 

  20. Min K, Choi B, Park K, Cho E (2018) Machine learning assisted optimization of electrochemical properties for Ni-rich cathode materials. Sci Rep 8:1–7. https://doi.org/10.1038/s41598-018-34201-4

    Article  CAS  Google Scholar 

  21. Cao C, Steinrück HG, Shyam B, Toney MF (2017) The atomic scale electrochemical lithiation and delithiation process of silicon. Adv Mater Interfaces 4:1700771. https://doi.org/10.1002/admi.201700771

    Article  CAS  Google Scholar 

  22. Ryu J, Hong D, Shin M, Park S (2016) Multiscale hyperporous silicon flake anodes for high initial coulombic efficiency and cycle stability. ACS Nano 10:10589–10597. https://doi.org/10.1021/acsnano.6b06828

    Article  CAS  PubMed  Google Scholar 

  23. Li Y, Veith GM, Browning KL, Chen J, Hensley DK, Paranthaman MP, Sun XG (2017) Paranthaman, M. P., Sun, X. G., Lithium malonatoborate additives enabled stable cycling of 5 V lithium metal and lithium ion batteries. Nano Energy 40:9–19. https://doi.org/10.1016/j.nanoen.2017.07.051

    Article  CAS  Google Scholar 

  24. Anseán D, Dubarry M, Devie A, Liaw BY, García VM, Viera JC (2017) Operando lithium plating quantification and early detection of a commercial LiFePO4 cell cycled under dynamic driving schedule. J Power Sources 356:36–46. https://doi.org/10.1016/j.jpowsour.2017.04.072

    Article  CAS  Google Scholar 

  25. Von Lüders C, Keil J, Webersberger M, Jossen A (2019) Modeling of lithium plating and lithium stripping in lithium-ion batteries. J Power Sources 414:41–47. https://doi.org/10.1016/j.jpowsour.2018.12.084

    Article  CAS  Google Scholar 

  26. Petzl M, Danzer MA (2014) Nondestructive detection, characterization, and quantification of lithium plating in commercial lithium-ion batteries. J Power Sour 254:80–87. https://doi.org/10.1016/j.jpowsour.2013.12.060

    Article  CAS  Google Scholar 

  27. Oumellal Y, Delpuech N, Mazouzi D (2011) The failure mechanism of nano-sized Si-based negative electrodes for lithium ion batteries. J Mater Chem 21:6201–6208. https://doi.org/10.1016/j.electacta.2018.02.151

    Article  CAS  Google Scholar 

  28. Liu D, Qian K, He YB, Luo D, Li H, Wu M, Li B (2018) Positive film-forming effect of fluoroethylene carbonate (FEC) on high-voltage cycling with three-electrode LiCoO2/Graphite pouch cell. Electrochim Acta 269:378–387. https://doi.org/10.1016/j.electacta.2018.02.151

    Article  CAS  Google Scholar 

  29. Nguyen CC, Song SW (2010) Interfacial structural stabilization on amorphous silicon anode for improved cycling performance in lithium-ion batteries. Electrochim Acta 55:3026–3033. https://doi.org/10.1016/j.electacta.2009.12.067

    Article  CAS  Google Scholar 

  30. Jang SH, Yim T (2017) Ether-functinoalized dimethoxydimethylsilane on electrochemical performance of a Ni-rich NCM cathode. ChemPhysChem 18:3402–3406. https://doi.org/10.1002/cphc.201700921

    Article  CAS  PubMed  Google Scholar 

  31. Seong MJ, Yim T (2020) Critical role of corrosion inhibitors modified by silyl ether functional groups on electrochemical performances of lithium manganese oxides. J Energy Chem 51:425–433. https://doi.org/10.1016/j.jechem.2020.02.029

    Article  Google Scholar 

  32. Song HJ, Oh SH, Lee Y (2021) Dually modified cathode-electrolyte interphases layers by calcium phosphate on the surface of nickel-rich layered oxide cathode for lithium-ion batteries. J Power Sources 483:229218. https://doi.org/10.1016/j.jpowsour.2020.229218

    Article  CAS  Google Scholar 

  33. An F, Zhao H, Zhou W, Ma Y, Li P (2019) S-containing and Si-containing compounds as highly effective electrolyte additives for SiO x-based anodes/NCM 811 cathodes in lithium ion cells. Sci Rep 9:1–16. https://doi.org/10.1038/s41598-019-49568-1

    Article  CAS  Google Scholar 

  34. Lee SJ, Han JG, Lee Y, Jeong MH, Shin WC, Ue M, Choi NSA (2014) Bi-functional lithium difluoro (oxalato) borate additive for lithium cobalt oxide/lithium nickel manganese cobalt oxide cathodes and silicon/graphite anodes in lithium-ion batteries at elevated temperatures. Electrochimica Acta 137:1–8. https://doi.org/10.1016/j.electacta.2014.05.136

    Article  CAS  Google Scholar 

Download references

Funding

This work was financially supported by the National Key Research and Development Program of China (no. 2016YFB0100303), the Key Science and Technology Special Project of Henan (project no. 202102210106), and the Zhengzhou Major Science and Technology Projects (project no. 2019CXZX0074).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanxia Liu.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

The authors claim that the paper is our original work and has not been published nor has been submitted simultaneously elsewhere.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 125 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, E., Liu, Y., Dong, J. et al. Construction of stable SEI film on Si@C high-loading electrodes by dimethoxydimethylsilane electrolyte additives. Ionics 28, 1625–1634 (2022). https://doi.org/10.1007/s11581-021-04409-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04409-y

Keywords

Navigation