Skip to main content
Log in

One-step synthesis of WO3 coating-modified LiNi0.8Co0.15Al0.05O2 cathode material with long cycling stability for lithium-ion batteries

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

High nickel LiNi0.8Co0.15Al0.05O2 (NCA) is one of the most promising cathode materials for next-generation lithium-ion batteries, but its poor structural stability hinders its further development. Here, WO3 coating-modified NCA was successfully prepared by one-step solid phase method, which effectively prevented corrosion of electrolyte. In different dosage ratios, 2.0mol%WO3-NCA sample shows the highest first discharge capacity of 180.4 mAh g−1 at 2 C, and the retention rate was 94.1% after 100 cycles, and more impressively, it exhibits a capacity of 161.1 mAh g−1 even at 5 C, whereas pure NCA only delivers 179.5 mAh g−1 and the retention of 77.1% at 2 C and 147.6 mAh g−1 at 5 C. These results indicate that the WO3 coating plays a role in inhibiting side reactions between NCA and the electrolyte, which improves cycle life of NCA material.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Kleiner K, Dixon D, Jakes P, Melke J, Yavuz M, Roth C, Nikolowski K (2015) J Power Sources 273:70–82

    Article  CAS  Google Scholar 

  2. Lee JH, Yoon CS, Hwang JY, Kim SJ, Maglia F, Lamp P, Myung ST, Sun YK (2016) Energy Environ Sci 9:2152–2158

    Article  CAS  Google Scholar 

  3. Hsieh CT, Hsu HH, Hsu JP, Chen YF, Chang JK (2016) Electrochim Acta 206:207–216

    Article  CAS  Google Scholar 

  4. Jo M, Noh M, Oh P, Kim Y, Cho J (2014) Adv Energy Mater 4:1301583

    Article  Google Scholar 

  5. Zhao EY, Hu ZB, Xie L, Chen XP, Liu XF (2015) RSC Adv. 5:31238–31244

    Article  CAS  Google Scholar 

  6. Hwang S, Kim SM, Bak SM, Chung KY, Chang W (2015) Chem. Mater. 27:6044–6052

    Article  CAS  Google Scholar 

  7. Zhang HZ, Liu C, Song DW, Zhang LQ, Bie LJ (2017) J Mater Chem A 5:835–841

    Article  CAS  Google Scholar 

  8. Yue Q, Jiang H (2014) Chem. Commun. 50:13362–13365

    Article  CAS  Google Scholar 

  9. Huang B, Li XH, Wang ZX, Guo HJ (2014) Mater Lett 131:210–213

    Article  CAS  Google Scholar 

  10. Liu WM, Tang X, Qin ML, Li GL, Deng JY, Hunag XW (2016) Mater Lett 185:96–99

    Article  CAS  Google Scholar 

  11. Cao CH, Zhang J, Xie XH, Xia BJ (2019) J Solid State Electr. 23:1351–1358

    Article  CAS  Google Scholar 

  12. Yang J, Xia YY (2016) J Electrochem Soc. 163:A2665–A2672

    Article  CAS  Google Scholar 

  13. Xiang W, Liu WY, Zhang J, Wang S (2018) J Alloy Compd. 775:72–80

    Article  Google Scholar 

  14. Lei YK, Li YH, Jiang HY, Lai CY (2019) J Mater Sci. 54:4202–4211

    Article  CAS  Google Scholar 

  15. Baboo JP, Park H, Song J, Kim S (2016) Electrochim Acta 224:243–250

    Article  Google Scholar 

  16. Cho Y, Oh P, Cho J (2013) Nano Lett 13:1145–1152

    Article  CAS  Google Scholar 

  17. Bark Y, Yong K (2007) Phys Chem C 111:1213–1218

    Article  Google Scholar 

  18. Lim SN, Ahn W, Yeon SH, Park SB (2014) Electrochim Acta 136:1–9

    Article  CAS  Google Scholar 

  19. Tian J, Su YF, Wu F, Xu SY, Chen F, Chen RJ, Li Q, Li JH, Sun FC (2016) ACS Appl Mater Interfaces 8:582–587

    Article  CAS  Google Scholar 

  20. Zhou PF, Meng HJ, Zhang Z, Chen CC, Lu YY, Cao J, Cheng FY (2017) J Mater Chem A 5:2724–2731

    Article  CAS  Google Scholar 

  21. Liu WM, Guo HH, Qin ML, Hong TL (2018) Chem Select 3:7660–7666

    CAS  Google Scholar 

  22. Chen T, Wang F, Li X, Yan XX (2019) Appl Surf Sci. 465:863–870

    Article  CAS  Google Scholar 

  23. Xie ZC, Zhang YY, Yuan AB, Xu JQ (2019) J Alloy Compd. 787:429–439

    Article  CAS  Google Scholar 

  24. Xie ZC, Zhang YY, Yuan AB, Xu JQ (2019) J Alloy Compd. 787:429–439

    Article  CAS  Google Scholar 

  25. Hao ZD, Xu XL, Deng SX, Wang H, Liu JB (2019) Ionics 25:2469–2476

    Article  CAS  Google Scholar 

  26. Xia S, Li F, Chen F (2017) J Alloy Compd. 731:428–436

    Article  Google Scholar 

  27. Liu PC, Xiao L, Chen YF, Chen H (2019) Ceram Int. 45:18398–18405

    Article  CAS  Google Scholar 

  28. Zhang JF, Zhang JY, Ou X, Wang CH, Zhang B (2019) ACS Appl Mater Interfaces 11:15507–15516

    Article  CAS  Google Scholar 

  29. Chen Z, Cao K, Zhu H (2019) Front Chem 6:648

    Article  Google Scholar 

  30. Deng H, Li SM, Liu H, Mei J, Liu H (2019) Ionics 25:827–834

    Article  Google Scholar 

  31. Luo W, Liu L, Li XX, Yu JL (2019) J Alloy Compd. 810:151786

    Article  CAS  Google Scholar 

  32. Xi Z, Wang ZX, Peng WJ, Guo HJ, Wang JX (2020) Energy Sci Eng. 8:1868–1879

    Article  CAS  Google Scholar 

  33. Zheng JC, Yang Z, He ZJ, Tong H, Yu WJ, Zhang JF (2018) Nano Energy 53:613–621

    Article  CAS  Google Scholar 

  34. Qiu L, Xiang W, Tian W, Xu CL (2019) Nano Energy 63:103818

    Article  CAS  Google Scholar 

  35. Dong J, Xiao P, Zheng DY, Chang CK (2018) J Mater Sci Mater Electron. 29:21119–21129

    Article  CAS  Google Scholar 

Download references

Funding

This work received support from the Venture & Innovation Support Program for Chongqing Overseas Returnees (No.cx2019128), the Key Project of Science and Technology Research of Chongqing Education Commission of China (No.KJZDK201801103), and the Chongqing Technology Innovation and Application Development project of Chongqing Science and Technology Commission (No.cstc2019jscx-msxmX0358).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuebu Hu.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, H., Yang, B., Zhou, L. et al. One-step synthesis of WO3 coating-modified LiNi0.8Co0.15Al0.05O2 cathode material with long cycling stability for lithium-ion batteries. Ionics 28, 1537–1545 (2022). https://doi.org/10.1007/s11581-021-04404-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04404-3

Keywords

Navigation