Skip to main content

Advertisement

Log in

High-performance lithium–sulfur battery based on carbonized 3D MXene/T-CNF aerogel composite membrane

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Lithium–sulfur batteries with high theoretical energy density are attracting more and more attention as candidate materials for next-generation energy storage systems. However, the insulating properties and poor shuttle effect of sulfur are still the main challenges faced by high-performance lithium–sulfur batteries. For this reason, we developed 3D MXene/T-CNF (three-dimensional Ti3C2Tx MXene/TEMPO-oxidized cellulose nanofibers) aerogel composite membrane by freeze-drying and high-temperature carbonization, which proved to be a good material for high-performance lithium–sulfur batteries. The MXene is a two-dimensional layered structure with high specific surface area and abundant active sites, which can provide electrodes with good conductivity and chemical stability as a supporting framework. Moreover, the addition of one-dimensional T-CNF strengthens the MXene structure and prevents it from collapsing while forming a three-dimensional conductive network, ensuring sufficient electron diffusion and electrolyte ion transportation channels. The material exhibits excellent electrochemical properties based on rational design. The 3D MXene/T-CNF-3 has an admirable reversible discharge specific capacity of 1119.6 mAh g−1 at the current density of 0.1 C, which is nearly 3 times as much as pure MXene. The Li–S battery exhibits good conductivity, rate performance, and cycle performance with the capacity retention of 99.4% after 200 cycles. This work offers a novel delicate design strategy for functional materials to achieve high-performance lithium–sulfur batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Yu X, Yun S, Yeon JS, Bhattacharya P, Wang L, Lee SW, Hu X, Park HS (2018) Pseudocapacitance: emergent pseudocapacitance of 2D nanomaterials (Adv. Energy Mater. 13/2018). Adv Energy Mater 8:1870058

    Article  Google Scholar 

  2. Xiong D, Shi Y, Yang HY (2021) Rational design of MXene-based films for energy storage: progress, prospects. Mater Today 46:183–211

    Article  CAS  Google Scholar 

  3. Xiao Z, Li Z, Meng X, Wang R (2019) MXene-engineered lithium-sulfur batteries. J Mater Chem A 7:22730–22743

    Article  CAS  Google Scholar 

  4. Zhu R, Lin S, Jiao J, Ma D, Cai Z, Hany K, Hamouda TM, Cai Y (2020) Magnetic and mesoporous Fe3O4-modified glass fiber separator for high-performance lithium-sulfur battery. Ionics 26:2325–2334

    Article  CAS  Google Scholar 

  5. Da C, Tang L, Li J (2010) ChemInform Abstract: graphene-based materials in electrochemistry. Cheminform 41:no-no

    Google Scholar 

  6. Peng H-J, Huang J-Q, Cheng X-B, Zhang Q (2017) Review on high-loading and high-energy lithium-sulfur batteries. Adv Energy Mater 7:1700260

    Article  Google Scholar 

  7. Ming F, Liang H, Huang G, Bayhan Z, Alshareef HN (2021) MXenes for rechargeable batteries beyond the lithium-ion. Adv Mater 33:2004039

    Article  CAS  Google Scholar 

  8. Dong Y, Zheng S, Qin J, Zhao X, Wu ZS (2018) All-MXene-based integrated electrode constructed by Ti3C2 nanoribbon framework host and nanosheet interlayer for high-energy-density Li–S batteries. ACS Nano 12:2381–2388

    Article  CAS  PubMed  Google Scholar 

  9. Liu X, Li Y, Xu X, Zhou L, Mai L (2021) Rechargeable metal (Li, Na, Mg, Al)-sulfur batteries: materials and advances, Journal of Energy. Chemistry 61:104–134

    Google Scholar 

  10. Zhou L, Danilov DL, Eichel R-A, Notten PHL (2021) Host materials anchoring polysulfides in Li-S batteries reviewed. Adv Energy Mater 11:2001304

    Article  CAS  Google Scholar 

  11. Zhang B, Luo C, Deng Y, Huang Z, Zhou G, Lv W, He Y-B, Wan Y, Kang F, Yang Q-H (2020) Optimized Catalytic WS2-WO3 heterostructure design for accelerated polysulfide conversion in lithium-sulfur batteries. Adv Energy Mater 10:2000091

    Article  CAS  Google Scholar 

  12. Huang S, Wang Z, Von Lim Y, Wang Y, Li Y, Zhang D, Yang HY (2021) Recent advances in heterostructure engineering for lithium-sulfur batteries. Adv Energy Mater 11:2003689

    Article  CAS  Google Scholar 

  13. Razzaq AA, Yao Y, Shah R, Qi P, Miao L, Chen M, Zhao X, Peng Y, Deng Z (2019) High-performance lithium sulfur batteries enabled by a synergy between sulfur and carbon nanotubes. Energy Storage Mater 16:194–202

    Article  Google Scholar 

  14. Velez P, del Carmen Rojas M, Velasco J, Para ML, Barraco D, Leiva EPM, Luque GL (2021) On the role of oxidized graphene interfaces in lithium sulfur batteries: thermodynamic and kinetic aspects using density functional theory. Appl Surf Sci 550:149358

    Article  CAS  Google Scholar 

  15. Li Z, Zhang JT, Lou XW (2015) Hollow carbon nanofibers filled with MnO2 nanosheets as efficient sulfur hosts for lithium-sulfur batteries. Angew Chem-Int Ed 54:12886–12890

    Article  CAS  Google Scholar 

  16. Song J, Guo X, Zhang J, Chen Y, Zhang C, Luo L, Wang F, Wang G (2019) Rational design of free-standing 3D porous MXene/rGO hybrid aerogels as polysulfide reservoirs for high-energy lithium-sulfur batteries. J Mater Chem A 7:6507–6513

    Article  CAS  Google Scholar 

  17. Borchardt L, Oschatz M, Kaskel S (2016) Carbon materials for lithium sulfur batteries-ten critical questions, Chemistry-a. European Journal 22:7324–7351

    Article  CAS  Google Scholar 

  18. Giebeler L, Balach J (2021) MXenes in lithium-sulfur batteries: scratching the surface of a complex 2D material - a minireview. Mater Today Commun 27:102323

    Article  CAS  Google Scholar 

  19. Fu Z, Wang N, Legut D, Si C, Zhang Q, Du S, Germann TC, Francisco JS, Zhang R (2019) Rational design of flexible two-dimensional MXenes with multiple functionalities. Chem Rev 119:11980–12031

    Article  CAS  PubMed  Google Scholar 

  20. Tao T, Lu SG, Fan Y, Lei WW, Huang SM, Chen Y (2017) Anode improvement in rechargeable lithium-sulfur batteries. Adv Mater. 29:1700542

    Article  Google Scholar 

  21. Ho DH, Choi YY, Jo SB, Myoung JM, Cho JH Sensing with MXenes: progress and prospects. Adv Mater

  22. Wang Y, Qi Q, Yin G, Wang W, Yu D (2021) Flexible, ultralight, and mechanically robust waterborne polyurethane/Ti3C2Tx MXene/nickel ferrite hybrid aerogels for high-performance electromagnetic interference shielding. ACS Appl Mater Interfaces 13:21831–21843

    Article  CAS  PubMed  Google Scholar 

  23. Qi QB, Wang W, Wang Y, Yu D (2020) Robust light-driven interfacial water evaporator by electrospinning SiO2/MWCNTs-COOH/PAN photothermal fiber membrane. Sep Purif Technol 239:116595

    Article  CAS  Google Scholar 

  24. Liang X, Garsuch A, Nazar LF (2015) Sulfur cathodes based on conductive MXene nanosheets for high-performance lithium–sulfur batteries. Angew Chem 54:3907–3911

    Article  CAS  Google Scholar 

  25. Zhao Q, Zhu QZ, Miao JW, Zhang P, Xu B (2019) 2D MXene nanosheets enable small-sulfur electrodes to be flexible for lithium-sulfur batteries. Nanoscale 11:8442–8448

    Article  CAS  PubMed  Google Scholar 

  26. Abbasi NM, Xiao Y, Zhang L, Peng L, Duo Y, Wang L, Yin P, Ge Y, Zhu H, Zhang B, Xie N, Duan Y, Wang B, Zhang H (2021) Heterostructures of titanium-based MXenes in energy conversion and storage devices. J Mater Chem C 9:8395–8465

    Article  CAS  Google Scholar 

  27. Aslam MK, Niu Y, Xu M (2021) MXenes for non-lithium-ion (Na, K, Ca, Mg, and Al) batteries and supercapacitors. Adv Energy Mater 11:2000681

    Article  CAS  Google Scholar 

  28. Liu M, Yang Z, Sun H, Lai C, Zhao X, Peng H, Liu T (2016) A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium-sulfur batteries. Nano Res 9:3735–3746

    Article  CAS  Google Scholar 

  29. Feng Y, Wang G, Ju J, Zhao Y, Kang W, Deng N, Cheng B (2020) Towards high energy density Li-S batteries with high sulfur loading: from key issues to advanced strategies. Energy Storage Mater 32:320–355

    Article  Google Scholar 

  30. Chung S-H, Manthiram A (2019) Current status and future prospects of metal-sulfur batteries. Adv Mater. 31:1901125

    Article  Google Scholar 

  31. Chen Y, Wang T, Tian H, Su D, Zhang Q, Wang G (2021) Advances in lithium-sulfur batteries: from academic research to commercial viability. Adv Mater. 33:2003666

    Article  CAS  Google Scholar 

  32. Zhang J, Xiang J, Dong Z, Liu Y, Wu Y, Xu C, Du G (2014) Biomass derived activated carbon with 3D connected architecture for rechargeable lithium - sulfur batteries. Electrochim Acta 116:146–151

    Article  CAS  Google Scholar 

  33. Gao Z, Zhang Y, Song N, Li X (2017) Biomass-derived renewable carbon materials for electrochemical energy storage. Mater Res Lett 5:69–88

    Article  CAS  Google Scholar 

  34. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3:71–85

    Article  CAS  PubMed  Google Scholar 

  35. Chen J, Liu Y, Liu Z, Chen Y, Xiong C (2020) Carbon nanofibril composites with high sulfur loading fabricated from nanocellulose for high-performance lithium-sulfur batteries. Colloids Surf A Physicochem Eng Asp 603:125249

    Article  CAS  Google Scholar 

  36. Yang J, Bao W, Jaumaux P, Zhang S, Wang C, Wang G (2019) MXene-based composites: synthesis and applications in rechargeable batteries and supercapacitors. Adv Mater Interfaces 6:1802004

    Article  Google Scholar 

  37. Xiong D, Li X, Bai Z, Lu S (2018) Recent advances in layered Ti3C2Tx MXene for electrochemical energy storage. Small 14:1703419

    Article  Google Scholar 

  38. Ronchi RM, Arantes JT, Santos SF (2019) synthesis, structure, properties and applications of MXenes: current status and perspectives. Ceram Int 45:18167–18188

    Article  CAS  Google Scholar 

  39. Kim HS, Jeong T-G, Choi N-S, Kim Y-T (2013) The cycling performances of lithium-sulfur batteries in TEGDME/DOL containing LiNO3 additive. Ionics 19:1795–1802

    Article  CAS  Google Scholar 

  40. Khalil-Abad MS, Yazdanshenas ME, Nateghi MR (2009) Effect of cationization on adsorption of silver nanoparticles on cotton surfaces and its antibacterial activity. Cellulose 16:1147–1157

    Article  Google Scholar 

  41. Wang Y, Qi Q, Fan J, Wang W, Yu D (2021) Simple and robust MXene/carbon nanotubes/cotton fabrics for textile wastewater purification via solar-driven interfacial water evaporation. Sep Purif Technol 254:117615

    Article  CAS  Google Scholar 

  42. Nan J, Guo X, Xiao J, Li X, Chen W, Wu W, Liu H, Wang Y, Wu M, Wang G (2021) Nanoengineering of 2D MXene-based materials for energy storage applications. Small 17:1902085

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (2020L0690), the Jincheng Science and Technology Planning Projects (20198037), and the Shanxi Science and Technology Foundation Platform Construction Projects (2015091011) and the Graduate Students’ Excellent Innovative Project of Shanxi Province (No.2019SY485), the Taiyuan University of Science and Technology Scientific Research Initial Funding (20192035), and Scientific, and the Technological Innovation Projects of Colleges and Universities in Shanxi Province (2020L0354).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingang Zhang.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 400 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Zhang, M. & Guo, J. High-performance lithium–sulfur battery based on carbonized 3D MXene/T-CNF aerogel composite membrane. Ionics 28, 647–655 (2022). https://doi.org/10.1007/s11581-021-04343-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04343-z

Keywords

Navigation