Skip to main content
Log in

Model of confined water self-diffusion and its application to proton-exchange membranes

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A model of self-diffusion in confined water is proposed. It is based on the idea that confined water forms structures similar to hexagonal ice and its transport characteristics can be described in the framework of a quasiparticle approach. It is assumed that the quasiparticles responsible for self-diffusion are D- and L-bond defects, which in the case of confined water are interstitial H2O molecules and vacancies in an ice-like lattice. The process of D-defect migration is described as the diffusion of an ideal gas through a porous medium. The analytical expression for the self-diffusion coefficient of confined water depending on the water content quantitatively well describes the experimental data for Nafion-type of proton-exchange membranes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Chaplin MF (2010) Structuring and Behaviour of Water in Nanochannels and Confined Spaces. In: Adsorption and phase behaviour in nanochannels and nanotubes. Springer, Netherlands, pp 241–255. http://www1.lsbu.ac.uk/water/water_anomalies.html

  2. Cerveny S, Mallamace F, Swenson J, Vogel M, Xu L (2016) Confined water as model of supercooled water. Chem Rev 116:7608–7625. https://doi.org/10.1021/acs.chemrev.5b00609

    Article  CAS  PubMed  Google Scholar 

  3. Liu KH, Zhang Y, Lee JJ, Chen CC, Yeh YQ, Chen SH, Mou CY (2013) Density and anomalous thermal expansion of deeply cooled water confined in mesoporous silica investigated by synchrotron X-ray diffraction. J Chem Phys 139:064502. https://doi.org/10.1063/1.4817186

    Article  CAS  PubMed  Google Scholar 

  4. Freitas DN, Mendonça BHS, Köhler MH, Barbosa MC, Matos MJS, Batista RJC, Oliveira AB (2020) Water diffusion in carbon nanotubes under directional electric frields: coupling between mobility and hydrogen bonding. Chem Phys 537:110849. https://doi.org/10.1016/j.chemphys.2020.110849

    Article  CAS  Google Scholar 

  5. Hassan J, Diamantopoulos G, Gkoura L, Karagianni M, Alhassan S, Kumar SV, Katsiotis MS, Karagiannis T, Fardis M, Panopoulos N, Kim HJ, Beazi-Katsioti M, Papavassiliou G (2018) Ultrafast stratified diffusion of water inside carbon nanotubes. Direct experimental evidence with 2D D–T2 NMR spectroscopy. J Phys Chem 122:10600–10606. https://doi.org/10.1021/acs.jpcc.8b01377

    Article  CAS  Google Scholar 

  6. Colomer MT, Rubio F, Jurado JR (2007) Transport properties of fast proton conducting mesoporous silica xerogels. J Power Sources 167:53–57. https://doi.org/10.1016/j.jpowsour.2007.01.092

    Article  CAS  Google Scholar 

  7. Gkoura L, Diamantopoulos G, Fardis M, Homouz D, Alhassan S, Beazi-Katsioti M, Karagianni M, Anastasiou A, Romanos G, Hassan J, Papavassiliou G (2020) The peculiar size and temperature dependence of water diffusion in carbon nanotubes studied with 2D NMR diffusion–relaxation D–T2eff spectroscopy. Biomicrofluidics 14:034114. https://doi.org/10.1063/5.0005398

    Article  CAS  PubMed  Google Scholar 

  8. Rossi M, Ceriotti M, Manolopoulos DE (2016) Nuclear quantum effects in H+ and OH diffusion along confined water wires. J Phys Chem Lett 7:3001–3007. https://doi.org/10.1021/acs.jpclett.6b01093

    Article  CAS  PubMed  Google Scholar 

  9. Reiter GF, Kolesnikov AI, Paddison SJ, Platzman PM, Moravsky AP, Adams MA, Mayers J (2012) Evidence for an anomalous quantum state of protons in nanoconfined water. Phys Rev B - Condens Matter Mater Phys 85:045403. https://doi.org/10.1103/PhysRevB.85.045403

    Article  CAS  Google Scholar 

  10. Kolesnikov AI, Reiter GF, Choudhury N, Prisk TR, Mamontov E, Podlesnyak A, Ehlers G, Seel AG, Wesolowski DJ, Anovitz LM (2016) Quantum tunneling of water in beryl: a new state of the water molecule. Phys Rev Lett 116:167802. https://doi.org/10.1103/PhysRevLett.116.167802

    Article  CAS  PubMed  Google Scholar 

  11. Zhukova ES, Torgashev VI, Gorshunov BP, Lebedev VV, Shakurov GS, Kremer RK, Pestrjakov EV, Thomas VG, Fursenko DA, Prokhorov AS, Dressel M (2014) Vibrational states of a water molecule in a nano-cavity of beryl crystal lattice. J Chem Phys 140:224317. https://doi.org/10.1063/1.4882062

    Article  CAS  PubMed  Google Scholar 

  12. Fumagalli L, Esfandiar A, Fabregas R, Hu S, Ares P, Janardanan A, Yang Q, Radha B, Taniguchi T, Watanabe K, Gomila G, Novoselov KS, Geim AK (2018) Anomalously low dielectric constant of confined water. Science 360:1339–1342. https://doi.org/10.1126/science.aat4191

    Article  CAS  PubMed  Google Scholar 

  13. Strazdaite S, Versluis J, Backus EHG, Bakker HJ (2014) Enhanced ordering of water at hydrophobic surfaces. J Chem Phys 140:054711. https://doi.org/10.1063/1.4863558

    Article  CAS  PubMed  Google Scholar 

  14. Corsetti F, Matthews P, Artacho E (2016) Enhanced configurational entropy in high-density nanoconfined bilayer ice. Sci Rep 6:18651. https://doi.org/10.1103/PhysRevLett.116.085901

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Michaelides A, Morgenstern K (2007) Ice nanoclusters at hydrophobic metal surfaces. Nat Mater 6:597–599. https://doi.org/10.1038/nmat1940

    Article  CAS  PubMed  Google Scholar 

  16. Zhang R, Chen Y, Troya D, Madsen LA (2020) Relating geometric nanoconfinement and local molecular environment to diffusion in ionic polymer membranes. Macromolecules 53:3296–3305. https://doi.org/10.1021/acs.macromol.9b02755

    Article  CAS  Google Scholar 

  17. Jaccard C (1964) Thermodynamics of irreversible processes applied to ice. Phys Der Kondens Mater 3:99–118. https://doi.org/10.1007/BF02422356

    Article  CAS  Google Scholar 

  18. Petrenko VF, Whitworth RW (1999) Physics of ice. Oxford University Press, New York

    Google Scholar 

  19. Artemov VG, Ryzhkin IA, Sinitsyn VV (2015) Similarity of the dielectric relaxation processes and transport characteristics in water and ice. JETP Lett 102:41–45. https://doi.org/10.7868/S0370274X15130093

    Article  CAS  Google Scholar 

  20. Ryzhkin MI, Ryzhkin IA, Kashin AM, Galitskaya EA, Sinitsyn VV (2018) Proton conductivity of water in mesoporous materials. JETP Lett 108:627–632. https://doi.org/10.1134/S0370274X18210051

    Article  Google Scholar 

  21. Klyuev AV, Ryzhkin IA, Ryzhkin MI (2015) Generalized dielectric permittivity of ice. JETP Lett 100:604–608. https://doi.org/10.1134/S0021364014210073

    Article  CAS  Google Scholar 

  22. Ryzhkin MI, Ryzhkin IA, Kashin AM, Sinitsyn VV (2020) Electrical properties of ice as a function of pressure. JETP Lett 112:531–538. https://doi.org/10.31857/S1234567820200124

    Article  Google Scholar 

  23. De Poorter J (2020) arXiv:1907.12479v3 [cond-mat.mtrl-sci]

  24. Galitskaya E, Privalov AF, Weigler M, Vogel M, Kashin A, Ryzhkin M, Sinitsyn V (2020) NMR diffusion studies of proton-exchange membranes in wide temperature range. J Membr Sci 596:117691. https://doi.org/10.1016/j.memsci.2019.117691

    Article  CAS  Google Scholar 

  25. Ryzhkin MI, Ryzhkin IA, Klyuev AV (2019) Shielding an electric field in water. JETP Lett 110:112–117. https://doi.org/10.1134/S0370274X1914008X

    Article  Google Scholar 

  26. Galitskaya EA, Privalov AF, Vogel M, Ryzhkin IA, Sinitsyn VV (2021) Self-diffusion micromechanism in Nafion studied by 2H NMR relaxation dispersion. J Chem Phys 154:034904–034904-6. https://doi.org/10.1063/5.0036605

    Article  CAS  PubMed  Google Scholar 

  27. Chernyak AV, Vasiliev SG, Avilova IA, Volkov VI (2019) Hydration and water molecules mobility in acid form of Nafion membrane studied by 1 H NMR techniques. Appl Magn Reson 50:677–693. https://doi.org/10.1007/s00723-019-1111-9

    Article  CAS  Google Scholar 

  28. Kusoglu A, Weber AZ (2017) New insights into perfluorinated sulfonic-acid ionomers. Chemical reviews 117: 987-1104. 10.1021/acs.chemrev.6b0015929. Parravano C, Baldeschwieler JD, Boudart M (1967) Diffusion of water in zeolites. Science 155:1535–1536. https://doi.org/10.1126/science.155.3769.1535

    Article  Google Scholar 

  29. Valiullin R (2016) Diffusion NMR of confined systems, In: Royal Society of Chemistry, 1st ed. Cambridge

  30. Briganti G, Rogati G, Parmentier A, Maccarini M, Luca F (2017) Neutron scattering observation of quasi-free rotations of water confined in carbon nanotubes. Sci Rep 7:45021–45031. https://doi.org/10.1038/srep45021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Weigler M, Winter E, Kresse B, Brodrecht M, Buntkowsky G, Vogel M (2020) Static field gradient NMR studies of water diffusion in mesoporous silica. Phys Chem Chem Phys 22:13989–13998. https://doi.org/10.1039/D0CP01290D

    Article  CAS  PubMed  Google Scholar 

  32. Zavorotnaya UM, Ponomarev II, Volkova YA, Modestov AD, Andreev VN, Privalov AF, Vogel M, Sinitsyn VV (2020) Preparation and study of sulfonated co-polynaphthoyleneimide proton-exchange membrane for a H2/air fuel cell. materials (Basel) 13:5297. https://doi.org/10.3390/ma13225297

    Article  CAS  Google Scholar 

  33. Otake K, Otsubo K, Komatsu T, Dekura S, Taylor JM, Ikeda R, Sugimoto K, Fujiwara A, Chou CP, Sakti AW, Nishimura Y, Nakai H, Kitagawa H (2020) Confined water-mediated high proton conduction in hydrophobic channel of a synthetic nanotube. Nat Commun 11:843. https://doi.org/10.1038/s41467-020-14627-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31:1164–1169. https://doi.org/10.1063/1.1730566

    Article  CAS  Google Scholar 

  35. Turnbull D, Cohen MH (1961) Free-volume model of the amorphous phase: glass transition. J Chem Phys 34:120–125. https://doi.org/10.1063/1.1731549

    Article  CAS  Google Scholar 

  36. Barbari TA, Koros WJ, Paul DR (1988) Gas transport in polymers based on bisphenol-A. J Polym Sci Part B Polym Phys 26:709–727. https://doi.org/10.1002/polb.1988.090260401

    Article  CAS  Google Scholar 

  37. Yeager HL, Steck A (1981) Cation and water diffusion in Nafion ion exchange membranes: influence of polymer structure. J Electrochem Soc 128:1880–1884. https://doi.org/10.1007/s11581-020-03780-6

    Article  CAS  Google Scholar 

  38. Gong X, Bandis A, Tao A, Meresi G, Wang Y, Inglefield PT, Jones AA, Wen WY (2001) Self-diffusion of water, ethanol and decafluropentane in perfluorosulfonate ionomer by pulse field gradient NMR. Polymer (Guildf) 42:6485–6492. https://doi.org/10.1016/S0032-3861(01)00119-7

    Article  CAS  Google Scholar 

  39. Edmondson CA, Fontanella JJ (2002) Free volume and percolation in S-SEBS and fluorocarbon proton conducting membranes. Solid State Ionics 152–153:355–361. https://doi.org/10.1016/S0167-2738(02)00336-3

    Article  Google Scholar 

  40. Suresh G, Sodaye S, Scindia YM, Pandey AK, Goswami A (2007) Study on physical and electrostatic interactions of counterions in poly(perfluorosulfonic) acid matrix: characterization of diffusion properties of membrane using radiotracers. Electrochim Acta 52:5968–5974. https://doi.org/10.1016/j.electacta.2007.03.044

    Article  CAS  Google Scholar 

  41. Ochi S, Kamishima O, Mizusaki J, Kawamura J (2009) Investigation of proton diffusion in Nafion®117 membrane by electrical conductivity and NMR. Solid State Ionics 180:580–584. https://doi.org/10.1016/j.ssi.2008.12.035

    Article  CAS  Google Scholar 

  42. Kreuer KD (2001) On the development of proton conducting polymer membranes for hydrogen and methanol fuel cells. J Membr Sci 185:29–39. https://doi.org/10.1016/S0376-7388(00)00632-3

    Article  CAS  Google Scholar 

  43. Mendil-Jakani H, Davies RJ, Emilie D, Guillermo A, Gebel G (2011) Water crystallization inside fuel cell membranes probed by X-ray scattering. J Membr Sci 369:148–154. https://doi.org/10.1016/j.memsci.2010.11.059

    Article  CAS  Google Scholar 

  44. Silvestrelli PL, Parrinello M (1999) Structural, electronic, and bonding properties of liquid water from first principles. J Chem Phys 111:3572–3580. https://doi.org/10.1063/1.479638

    Article  CAS  Google Scholar 

  45. Zhao Q, Majsztrik P, Benziger J (2011) Diffusion and interfacial transport of water in Nafion. J Phys Chem B 115:2717–2727. https://doi.org/10.1021/jp1112125

    Article  CAS  PubMed  Google Scholar 

  46. Hardy EH, Zygar A, Zeidler MD, Holz M, Sacher FD (2001) Isotope effect on the translational and rotational motion in liquid water and ammonia. J Chem Phys 114:3174–3181. https://doi.org/10.1063/1.1340584

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. A. Privalov for fruitful discussion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vitaly V. Sinitsyn.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Galitskaya, E.A., Zavorotnaya, U.M., Ryzhkin, I.A. et al. Model of confined water self-diffusion and its application to proton-exchange membranes. Ionics 27, 2717–2721 (2021). https://doi.org/10.1007/s11581-021-04083-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04083-0

Keywords

Navigation