Skip to main content
Log in

Straightforward synthesis of chemically ordered Pt3Co/C nanoparticles by a solid phase method for oxygen-reduction reaction

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

We developed a solid phase method to fabricate structurally ordered Pt3Co/C nanoparticles (NPs) with controllable component proportion as a high efficiency catalyst toward oxygen-reduction reaction. As a result, Pt3Co/C NPs exhibit high crystallinity with small average size and narrow size distribution. Moreover, the ordered Pt3Co/C NPs own enhanced ORR catalytic performance in acid. During the preparation process, the NaCl-matrix acts synergistically with carbon black as nanoreactors for Pt alloying with Co, avoiding serious sintering resulted by annealing at high temperature. Furthermore, other Pt-based NPs supported on carbon can also be prepared by this methodology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Li J, Yin HM, Li XB, Okunishi E, Shen YL, He J, Tang ZK, Wang WX, Yücelen E, Li C, Gong Y, Gu L, Miao S, Liu LM, Luo J, Ding Y (2017) Surface evolution of a Pt–Pd–Au electrocatalyst for stable oxygen reduction. Nat Energy 2(8):17111

    Article  CAS  Google Scholar 

  2. Kulkarni A, Siahrostami S, Patel A, Nørskov JK (2018) Understanding catalytic activity trends in the oxygen reduction reaction. Chem Rev 118(5):2302–2312

    Article  CAS  Google Scholar 

  3. Liu ML, Zhao ZP, Duan XF, Huang Y (2019) Nanoscale structure design for high-performance Pt-Based ORR catalysts. Adv Mater 31(6):1–8

    Google Scholar 

  4. Debe MK (2012) Electrocatalyst approaches and challenges for automotive fuel cells. Nature 486(7401):43–51

    Article  CAS  Google Scholar 

  5. Li MF, Zhao ZP, Cheng T, Fortunelli A, Chen CY, Yu R, Zhang QH, Gu L, Merinov BV, Lin ZY, Zhu E, Yu T, Jia QY, Guo JH, Zhang L, Goddard WA, Huang Y, Duan XF (2016) Ultrafine jagged platinum nanowires enable ultrahigh mass activity for the oxygen reduction reaction. Science 354(6318):1414–1419

    Article  CAS  Google Scholar 

  6. Wu BH, Wu CQ, Zhu JJ, Xue L, Chu J, Wang XQ, Xiong SX (2020) Facile synthesis of carboxylated-graphene nanosheets supported PtRu catalysts and their electrocatalytic oxidation of methanol. Ionics 26:4599–4608

    Article  CAS  Google Scholar 

  7. Ren WN, Zang WJ, Zhang HF, Bian JL, Chen ZF, Guan C, Cheng CW (2019) PtCo bimetallic nanoparticles encapsulated in N-Doped carbon nanorod arrays for efficient electrocatalysis. Carbon 142:206–216

    Article  CAS  Google Scholar 

  8. Wang C, Vliet DVD, More KL, Zaluzec NJ, Peng S, Sun SH, Daimon H, Wang GF, Greeley J, Pearson J, Paulikas PA, Karapetrov G, Strmcnik D, Markovic NM, Vojis A (2011) Multimetallic Au/FePt3 nanoparticles as highly durable electrocatalyst. Nano Lett 11(3):919–926

    Article  CAS  Google Scholar 

  9. Xin HL, Alayoglu S, Tao R, Genc A, Wang CM, Kovarik L, Stach EA, Wang LW, Salmeron M, Somorjai GA, Zheng HM (2014) Revealing the atomic restructuring of Pt-Co nanoparticles. Nano Lett 14(6):3203–3207

    Article  CAS  Google Scholar 

  10. Zhai XH, Wang P, Wang K, Jun L, Pang XL, Wang X, Zhao L (2020) Facile synthesis of PtCo nanowires with enhanced electrocatalytic performance for ethanol oxidation reaction. Ionics 26:3091–3097

    Article  CAS  Google Scholar 

  11. Stamenkovic VR, Mun BS, Mayrhofer KJJ, Ross PN, Markovic NM (2006) Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. J Am Chem Soc 128(27):8813–8819

    Article  CAS  Google Scholar 

  12. Liang J, Li N, Zhao Z, Ma L, Wang X, Li S, Liu X, Wang T, Du Y, Lu G, Han J (2019) Tungsten-doped L10-PtCo ultrasmall nanoparticles as a high-performance fuel cell cathode. Angew Chem 131(43):15617–15623

    Article  Google Scholar 

  13. Zhang L, Roling LT, Wang X, Vara M, Chi MF, Liu JY, Choi S, Park JH, Herron JA, Xie ZX, Mavrikakis M, Xia YN (2015) Platinum-based nanocages with subnanometer-thick walls and well-defined, controllable facets. Science 349(6246):412–416

    Article  CAS  Google Scholar 

  14. Greeley J, Stephens IEL, Bondarenko AS, Johansson TP, Hansen HA, Jaramillo TF, Rossmeisl J, Chorkendorff I, Nørskov JK (2009) Alloys of platinum and early transition metals as oxygen reduction electrocatalysts. Nat Chem 1(7):552–556

    Article  CAS  Google Scholar 

  15. Ling LL, Liu WJ, Chen SQ, Hu X, Jiang H (2018) MOF templated nitrogen doped carbon stabilized Pt–Co bimetallic nanoparticles: low Pt content and robust activity toward electrocatalytic oxygen reduction reaction. ACS Appl Nano Mater 1(7):3331–3338

    Article  CAS  Google Scholar 

  16. Kimmel YC, Xu XG, Yu WT, Yang XD, Chen JG (2014) Trends in electrochemical stability of transition metal carbides and their potential use as supports for low-cost electrocatalysts. ACS Catal 4(5):1558–1562

    Article  CAS  Google Scholar 

  17. Wang DL, Xin HL, Hovden R, Wang HS, Yu YC, Muller DA, DiSalvo FJ, Abruna HD (2013) Structurally ordered intermetallic platinum-cobalt core-shell nanoparticles with enhanced activity and stability as oxygen reduction electrocatalysts. Nat Mater 12(1):81–87

    Article  CAS  Google Scholar 

  18. Hunt ST, Milina M, Alba-Rubio AC, Hendon CH, Dumesic JA, Román-Leshkov Y (2016) Self-assembly of noble metal monolayers on transition metal carbide nanoparticle catalysts. Science 352(6288):974–978

    Article  CAS  Google Scholar 

  19. Li Q, Wu LH, Wu G, Su D, Lv HF, Zhang S, Zhu WL, Casimir A, Zhu HY, Mendoza-Garcia A, Sun SH (2015) New approach to fully ordered fct-FePt nanoparticles for much enhanced electrocatalysis in acid. Nano Lett 15(4):2468–2473

    Article  CAS  Google Scholar 

  20. Rong CB, Li DR, Nandwana V, Poudyal N, Ding Y, Wang ZL, Zeng H, Liu JP (2006) Size-dependent chemical and magnetic ordering in L10-FePt nanoparticles. Adv Mater 18(22):2984–2988

    Article  CAS  Google Scholar 

  21. Lokanathan M, Patil IM, Mukherjee P, Swami A, Kakade B (2020) Molten-salt synthesis of Pt3Co binary alloy nanoplates as excellent and durable electrocatalysts toward oxygen electroreduction. ACS Sustain Chem Eng 8(2):986–993

    Article  CAS  Google Scholar 

  22. Chen YZ, Xu Q, Yu SH, Jiang HL (2014) Tiny Pd@Co core-shell nanoparticles confined inside a metal-organic framework for highly efficient catalysis. Small 11(1):71–76

    Article  Google Scholar 

  23. Chong S, Zhang GM, Zhang N, Liu YC, Zhu J, Huang T, Fang SY (2016) Preparation of FeCeOx by ultrasonic impregnation method for heterogeneous fenton degradation of diclofenac. Ultrason Sonochem 32:231–240

    Article  CAS  Google Scholar 

  24. Behzadnia A, Montazer M, Rad MM (2015) In-situ sonosynthesis of nano N-doped ZnO on wool producing fabric with photo and bio activities, cell viability and enhanced mechanical properties. J Photoch Photobio B 149:103–115

    Article  CAS  Google Scholar 

  25. Cheng ZZ, Geng XP, Chen LY, Zhang C, Huang HH, Tang SL, Du YW (2018) In situ synthesis of chemically ordered primitive cubic Pt3Co nanoparticles by a spray paint drying method for hydrogen evolution reaction. J Mater Sci 53(17):12399–12406

    Article  CAS  Google Scholar 

  26. Garsany Y, Ge JJ, St-Pierre J, Rocheleau R, Swider-Lyons KE (2014) Analytical procedure for accurate comparison of rotating disk electrode results for the oxygen reduction activity of Pt/C. J Electrochem Soc 161(5):628–640

    Article  Google Scholar 

  27. Wen YH, Zhang LH, Wang JB, Huang R (2019) Atomic-scale insights into thermal stability of Pt3Co nanoparticles: a comparison between disordered alloy and ordered intermetallics. J Alloys Compd 776:629–635

    Article  CAS  Google Scholar 

  28. Hansen M, Anderko K (1958) Constitution of binary alloys, 2nd edn. McGraw-Hill, New York

    Google Scholar 

  29. Berg H, Cohen JB (1972) Long-range order and ordering kinetics in CoPt3. Metall Trans 3(7):1797–1805

    Article  CAS  Google Scholar 

  30. Murray CB, Sun SH, Doyle H, Betley T (2001) Monodisperse 3d transition-metal (Co, Ni, Fe) nanoparticles and their assembly into nanoparticle superlattices. MRS Bull 26(12):985–991

    Article  CAS  Google Scholar 

  31. Sánchez-Barriga J, Lucas M, Radu F, Martin E, Multigner M, Marin P, Hernando A, Rivero G (2009) Interplay between the magnetic anisotropy contributions of cobalt nanowires. Phys Rev B 80(18):1–8

    Article  Google Scholar 

  32. Wakisaka M, Mitsui S, Hirose Y, Kawashima K, Uchida H, Watanabe M (2006) Electronic structures of Pt-Co and Pt-Ru alloys for CO-tolerant anode catalysts in polymer electrolyte fuel cells studied by EC-XPS. J Phys Chem B 110(46):23489–23496

    Article  CAS  Google Scholar 

  33. Kim J, Lee YM, Sun SH (2010) Structurally ordered FePt nanoparticles and their enhanced catalysis for oxygen reduction reaction. J Am Chem Soc 132(14):4996–4997

    Article  CAS  Google Scholar 

  34. Šipr O, Minár J, Mankovsky S, Ebert H (2008) Influence of composition, many-body effects, spin-orbit coupling, and disorder on magnetism of Co-Pt solid-state systems. Phys Rev B 78(14):1–12

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 11604147) and the Foundation of National Laboratory of Solid State Microstructures, Nanjing University (M32048).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhenzhi Cheng.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(DOCX 1716 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, Z., Liao, S., Zhou, W. et al. Straightforward synthesis of chemically ordered Pt3Co/C nanoparticles by a solid phase method for oxygen-reduction reaction. Ionics 27, 2553–2560 (2021). https://doi.org/10.1007/s11581-021-04017-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-021-04017-w

Keywords

Navigation