Skip to main content
Log in

Carbon-coated ZnS composites for lithium-ion battery anode materials

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The ZnS/C composites with different carbon coating contents were successfully prepared using the solvothermal method followed by the calcination process. The obtained ZnS/C composites were characterized by XRD, SEM, and TEM. The results indicate that the morphology of 50 wt% carbon-coated ZnS/C composites possesses uniform spheres with a size of 80 nm, and the thickness of the carbon layer is 8 nm. When the prepared composites were used as anode materials for lithium-ion batteries (LIBs), the electrode made by 50 wt% carbon-coated ZnS/C composites shows an excellent initial discharge capacity of 1189.8 mAh/g, high discharge capacity of 948.9 mAh/g at a current rate of 0.1 C after 50 cycles, good cycling stability, and excellent rate capability of 744.8 mAh/g at 2.0 C. The excellent electrochemical performances make the nanosized ZnS/C composites a promising candidate for the LIBs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Wang SF, Chen HD, Zhong ZM, Hou XH, Hu SJWJJ (2017) Graphene-decorated sphere Li2S composite prepared by spray drying method as cathode for lithium-sulfur full cell. Ionics 24:3385–3392

    Article  Google Scholar 

  2. Lee YT, Yoon CS, Sun YK (2005) Improved electrochemical performance of Li-doped natural graphite anode for lithium secondary batteries. J Power Source 139:230–234

    Article  CAS  Google Scholar 

  3. Zhou YL, Zhang M, Wang Q, Yang (2020) Pseudocapacitance boosted n-doped carbon coated Fe7S8 nanoaggregates as promising anode materials for lithium and sodium storage. Nano Res 13(3):691–700

    Article  CAS  Google Scholar 

  4. Zhou YL, Tian J, Xu HY, Yang J, Qian YT (2017) VS4 nanoparticles rooted by a-C coated MWCNTs as an advanced anode material in lithium ion batteries. Energy Storage Mater 6:149–156

    Article  Google Scholar 

  5. Wang Y, Zhu QS, Tao L, Su XW (2011) Controlled-synthesis of NiS hierarchical hollow microspheres with different building blocks and their application in lithium batteries. J Mater Chem 21:9248–9254

    Article  CAS  Google Scholar 

  6. Zhou YL, Li YY, Wang QQ, Wang Q (2019) Ultrasmall MoS3 loaded GO nanocomposites as high-rateand long-cycle-life anode materials for lithium- and sodium-ion batteries. Chem Electro Chem 6(12):3113–3115

    CAS  Google Scholar 

  7. Yu GY, Chen XJ, Wang AS, Wang YL (2018) Carbon@SnS2 core-shell microspheres for lithium-ion battery anode materials. Ionics 24:1–9

    Article  Google Scholar 

  8. Suyver JF, Wuister SF, Kelly JJ, Meijerink A (2001) Synthesis and photoluminescence of nanocrystalline ZnS:Mn2+. Nano Lett 1:429–433

    Article  CAS  Google Scholar 

  9. Zhang QY, Su K, Chan-Park MB, Wu H, Wang DA, Xu R (2014) Development of high refractive ZnS/PVP/PDMAA hydrogel nanocomposites for artificial cornea implants. Acta Biomater 10:1167–1176

    Article  CAS  Google Scholar 

  10. Zhang SJ (2014) Preparation of controlled-shape ZnS microcrystals and photocatalytic property. Ceram Int 40:4553–4557

    Article  CAS  Google Scholar 

  11. Du XF, Zhao HL, Lu Y, Zhang ZJ, Kulka A, Swierczek K (2017) Synthesis of core-shell-like ZnS/C nanocomposite as improved anode material for lithium ion batteries. Electrochim Acta 228:101–106

    Article  Google Scholar 

  12. Qin W, Li D, Zhang X, Yan D, Hu B, Pan L (2016) ZnS nanoparticles embedded in reduced graphene oxide as high performance anode material of sodium-ion batteries. Electrochim Acta 191:435–443

    Article  CAS  Google Scholar 

  13. Xie R, Li Y, Liu H, Guo B (2016) Facile fabrication and electrochemical behaviors of Mn: ZnS nanocrystals. J Alloy Compd 672:571–577

    Article  CAS  Google Scholar 

  14. Fun Y, Zhang Z, Yang X, Gan Y, Chen W (2015) ZnS nanoparticles embedded in porous carbon matrices as anode materials for lithium ion batteries. RSC Adv 5:86941–86944

    Article  Google Scholar 

  15. Mao ML, Jiang L, Wu LC, Zhang M, Wang T (2015) The structure control of ZnS/ graphene composites and their excellent properties for lithium-ion batteries. J Mater Chem A 3:13384–13389

    Article  CAS  Google Scholar 

  16. Wang JZ, Wang GX, Wang L, See HN, Liu HK (2006) An investigation on electrochemical behavior of nanosize zinc sulfide electrode in lithium-ion cell. J Solid State Electr 10:250–254

    Article  CAS  Google Scholar 

  17. He L, Liao XZ, Yang K, He YS, Wen W, Ma ZF (2011) Electrochemical characteristics and intercalation mechanism of ZnS/C composite as anode active material for lithium-ion batteries. Electrochim Acta 56:1213–1218

    Article  CAS  Google Scholar 

  18. Zou LH, Huang BY, Huang Y, Huang QZ, Wang CA (2003) An investigation of heterogeneity of the degree of graphitization in carbon-carbon composites. Mater Chem and Phys 82:654–662

    Article  CAS  Google Scholar 

  19. Sun SX, Lang JW, Wang RT, Kong LB, Li XC, Yan XB (2014) Identifying pseudocapacitance of Fe2O3 in an ionic liquid and its application in asymmetric supercapacitors. J Mater Chem A 2:14550–14556

    Article  CAS  Google Scholar 

  20. Sacci RL, Black JM, Balke N, Dudney NJ, More KL, Unocic RR (2015) Nanoscale imaging of fundamental Li battery chemistry: solid-electrolyte interphase formation and preferential growth of lithium metal nanoclusters. Nano Lett 15:2011–2018

    Article  CAS  Google Scholar 

  21. Jorn R, Kumar R, Abraham DP, Voth GA (2013) Atomistic modeling of the electrode-electrolyte interface in Li-ion energy storage systems: electrolyte structuring. J Phys Chem C 117:3747–3761

    Article  CAS  Google Scholar 

  22. Guk H, Kim D, Choi SH, Chuang DH, Han SS (2016) Thermostable artificial solid-electrolyte interface layer covalently linked to graphite for lithium ion battery: molecular dynamics simulations. J Electrochem Soc 163:A917–A922

    Article  CAS  Google Scholar 

  23. Takamatsu D, Koyama Y, Orikasa Y, Mori S, Nakatsutsumi T, Hirano T, Tanida H, Arai H, Uchimoto Y, Ogumi Z (2012) First in situ observation of the LiCoO2 electrode/electrolyte interface by total-reflection X-ray absorption spectroscopy. Angew Chem Int Edit 51:11597–11601

    Article  CAS  Google Scholar 

  24. Jiang SD, Bai ZM, Tang G, Hu Y, Song L (2014) Synthesis of ZnS decorated graphene sheets for reducing fire hazards of epoxy composites. Ind Eng Chem Res 53:6708–6717

    Article  CAS  Google Scholar 

  25. Virieux H, Le Troedec M, Cros-Gagneux A, Delpech F, Nayral C, Martinez H, Chaudret B (2012) InP/ZnS nanocrystals: coupling NMR and XPS for fine surface and interface description. J Am Cheml Soc 134:19701–19708

    Article  CAS  Google Scholar 

  26. Shen XY, Mu DB, Chen S, Wu BR, Wu F (2013) Enhanced electrochemical performance of ZnO-loaded/porous carbon composite as anode materials for lithium ion batteries. ACS Appl Mater Int 5:3118–3125

    Article  CAS  Google Scholar 

  27. Feng Y, Feng N, Zhang G, Du GX (2013) One-pot hydrothermal synthesis of ZnS-reduced graphene oxide composites with enhanced photocatalytic properties. Crystengcomm 16:214–222

    Article  Google Scholar 

  28. Feng N, Feng Y, Wei YZ, Zhou XP (2014) Preparation and electrochemical performance of a porous polymer-derived silicon carbonitride anode by hydrofluoric acid etching for lithium ion batteries. RSC Adv 4:23694

    Article  CAS  Google Scholar 

  29. Yue HY, Shi ZP, Wang QX, Cao ZX, Dong HY, Qiao Y, Yin YH, Yang ST (2014) MOF-derived cobalt-doped ZnO@C composites as a high-performance anode material for lithium-ion batteries. ACS Appl Mater Int 6:17067–17074

    Article  CAS  Google Scholar 

  30. Zhao YC, Li X, Liu JD, Wang CG, Zhao YY, Yue GH (2016) MOF-derived ZnO/Ni3ZnC0.7/C hybrids yolk-shell microspheres with excellent electrochemical performances for lithium ion batteries. ACS Appl Mater Int 8:6472–7480

    Article  CAS  Google Scholar 

  31. Belliard F, Irvine JTS (2001) Electrochemical performance of ball-milled ZnO-SnO2 systems as anodes in lithium-ion battery. J Power Sources 97-98:219–222

    Article  CAS  Google Scholar 

  32. Yao JY, Liu B, Ozden S, Wu JJ, Yang SB, Rodrigues MF, Kalaga K, Dong P, Xiao P, Zhang YH, Vajtai R, Ajayan PM (2015) 3D nanostructured molybdenum diselenide/graphene foam as anodes for long-cycle life lithium-ion batteries. Electrochim Acta 176:103–111

    Article  CAS  Google Scholar 

  33. Xie D, Tang WJ, Wang YD, Xia XH, Zhong Y, Zhou D, Wang DH, Wang XL, Tu JP (2016) Facile fabrication of integrated three-dimensional C-MoSe2/reduced graphene oxide composite with enhanced performance for sodium storage. Nano Res 9:1618–1629

    Article  CAS  Google Scholar 

Download references

Funding

The project was supported by the Key Research Projects in Gansu Province (No. 17YF1GA020).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ansong Wang or Xiujuan Chen.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, A., Chen, X., Yu, G. et al. Carbon-coated ZnS composites for lithium-ion battery anode materials. Ionics 27, 541–550 (2021). https://doi.org/10.1007/s11581-020-03830-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03830-z

Keywords

Navigation