Skip to main content
Log in

Effect of phosphorous-doped graphitic carbon nitride on electrochemical properties of lithium-sulfur battery

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Various sulfur host materials have been developed to improve the performance of lithium-sulfur (Li-S) battery. In this work, we used phosphorus-doped graphitic carbon nitride (xP-g-C3N4) as a sulfur host material for the first time. xP-g-C3N4 was prepared with dicyandiamide as the precursor and 1-butyl-3-methylimidazole hexafluorophosphate as a phosphorus source. The effect of phosphorus doping on the electrochemical properties of xP-g-C3N4/S as cathode material for the Li-S battery was studied. The results show that decreasing lattice spacing improves the conductivity by doping phosphorus, and the specific surface area of 0.1P-g-C3N4 reaches 19.66 m2 g−1, which is about two times higher than that of g-C3N4. 0.1P-g-C3N4/S has 1344 mAh g−1 for the initial discharge specific capacity and 882 mAh g−1 for reversible specific capacity after 100 cycles with a capacity decay of 0.34% per cycle, exhibiting outstanding cycling performance and rate performance. Phosphorus-doped materials have a high specific capacity due to their own stronger physical adsorption and chemisorption of polysulfides and higher conductivity. This doping strategy proposed a new and efficient pathway for the fabrication of high-performance sulfur electrodes for Li-S batteries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Li C, Xi Z, Guo D, Chen X, Yin L (2018) Chemical immobilization effect on lithium polysulfides for lithium-sulfur batteries. Small 14(4):1701986–1702007

    Google Scholar 

  2. Pang Q, Liang X, Kwok CY, Nazar LF (2016) Advances in lithium-sulfur batteries based on multifunctional cathodes and electrolytes. Nat Energy 1(9):16132–16143

    CAS  Google Scholar 

  3. Li L, Jacobs R, Gao P, Gan L, Wang F, Morgan D, Jin S (2016) Origins of large voltage hysteresis in high-energy-density metal fluoride lithium-ion battery conversion electrodes. J Am Chem Soc 138(8):2838–2848

    CAS  PubMed  Google Scholar 

  4. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

    CAS  PubMed  Google Scholar 

  5. Xiang H, Chen J, Li Z, Wang H (2011) An inorganic membrane as a separator for lithium-ion battery. J Power Sources 196(20):8651–8655

    CAS  Google Scholar 

  6. Jiang Z, Xie H, Wang S, Song X, Yao X, Wang H (2018) Perovskite membranes with vertically aligned microchannels for all-solid-state lithium batteries. Adv Energy Mater 8(27):1801433–1801440

    Google Scholar 

  7. Chen X, He W, Ding LX, Wang S, Wang H (2019) Enhancing interfacial contact in all solid state batteries with a cathode-supported solid electrolyte membrane framework. Energy Environ Sci 12(3):938–944

    CAS  Google Scholar 

  8. Zeng T, Hu X, Ji P, Shang B, Peng Q, Zhang Y, Song R (2017) Promotional role of Li4Ti5O12 as polysulfide adsorbent and fast Li+ conductor on electrochemical performances of sulfur cathode. J Power Sources 359:250–261

    CAS  Google Scholar 

  9. Cui Y, Zhang Q, Wu J, Liang X, Baker AP, Qu D, Zhang H, Zhang H, Zhang X (2018) Developing porous carbon with dihydrogen phosphate groups as sulfur host for high performance lithium sulfur batteries. J Power Sources 378:40–47

    CAS  Google Scholar 

  10. Ji P, Shang B, Peng Q, Hu X, Wei J (2018) α-MoO3 spheres as effective polysulfides adsorbent for high sulfur content cathode in lithium-sulfur batteries. J Power Sources 400:572–579

    CAS  Google Scholar 

  11. Zheng C, Niu S, Lv W, Zhou G, Li J, Fan S, Deng Y, Pan Z, Li B, Kang F, Yang QH (2017) Propelling polysulfides transformation for high-rate and long-life lithium-sulfur batteries. Nano Energy 33:306–312

    CAS  Google Scholar 

  12. Liu D, Zhang C, Zhou G, Lv W, Ling G, Zhi L, Yang QH (2018) Catalytic effects in lithium-sulfur batteries: promoted sulfur transformation and reduced shuttle effect. Advanced Science 5(1):1700270–1700282

    PubMed  Google Scholar 

  13. Wang Y, Zhang R, Chen J, Wu H, Lu S, Wang K, Li H, Harris CJ, Xi K, Kumar RV, Ding S (2019) Enhancing catalytic activity of titanium oxide in lithium-sulfur batteries by band engineering. Adv Energy Mater 9(24):1900953–1900964

    Google Scholar 

  14. Liu X, Huang JQ, Zhang Q, Mai L (2017) Nanostructured metal oxides and sulfides for lithium-sulfur batteries. Adv Mater 29(20):1601759–1601768

    Google Scholar 

  15. Jing HK, Kong LL, Liu S, Li GR, Gao XP (2015) Protected lithium anode with porous Al2O3 layer for lithium-sulfur battery. J Mater Chem A 3(23):12213–12219

    CAS  Google Scholar 

  16. Wang Y, Zhang R, Pang Y, Chen X, Lang J, Xu J, Xiao C, Li H, Xi K, Ding S (2019) Carbon@titanium nitride dual shell nanospheres as multi-functional hosts for lithium sulfur batteries. Energy Storage Materials 16:228–235

    Google Scholar 

  17. Wang H, Yang Y, Liang Y, Robinson JT, Li Y, Jackson A, Cui Y, Dai H (2011) Graphene-wrapped sulfur particles as a rechargeable lithium-sulfur battery cathode material with high capacity and cycling stability. Nano Lett 11(7):2644–2647

    CAS  PubMed  Google Scholar 

  18. Chen H, Wang C, Dai Y, Qiu S, Yang J, Lu W, Chen L (2015) Rational design of cathode structure for high rate performance lithium-sulfur batteries. Nano Lett 15(8):5443–5448

    CAS  PubMed  Google Scholar 

  19. Xiao Z, Yang Z, Nie H, Lu Y, Yang K, Huang S (2014) Porous carbon nanotubes etched by water steam for high-rate large-capacity lithium-sulfur batteries. J Mater Chem A 2(23):8683–8689

    CAS  Google Scholar 

  20. Zheng S, Chen Y, Xu Y, Yi F, Zhu Y, Liu Y, Yang J, Wang C (2013) In situ formed lithium sulfide/microporous carbon cathodes for lithium-ion batteries. ACS Nano 7(12):10995–11003

    CAS  PubMed  Google Scholar 

  21. Yu F, Li Y, Jia M, Nan T, Zhang H, Zhao S, Shen Q (2017) Elaborate construction and electrochemical properties of lignin-derived macro−/micro-porous carbon-sulfur composites for rechargeable lithium-sulfur batteries: the effect of sulfur-loading time. J Alloys Compd 709:677–685

    CAS  Google Scholar 

  22. Yang K, Gao Q, Tan Y, Tian W, Zhu L, Yang C (2015) Microporous carbon derived from apricot shell as cathode material for lithium-sulfur battery. Micropor Mesopor Mat 204:235–241

    CAS  Google Scholar 

  23. Song J, Yu Z, Gordin ML, Wang D (2016) Advanced sulfur cathode enabled by highly crumpled nitrogen-doped graphene sheets for high-energy-density lithium-sulfur batteries. Nano Lett 16(2):864–870

    CAS  PubMed  Google Scholar 

  24. Su D, Cortie M, Wang G (2017) Fabrication of N-doped graphene-carbon nanotube hybrids from prussian blue for lithium-sulfur batteries. Adv Energy Mater 7(8):1602014–1602026

    Google Scholar 

  25. Pang Q, Nazar LF (2016) Long-life and high-areal-capacity Li-S batteries enabled by a light-weight polar host with intrinsic polysulfide adsorption. ACS Nano 10(4):4111–4118

    CAS  PubMed  Google Scholar 

  26. Meng Z, Xie Y, Cai T, Sun Z, Jiang K, Han WQ (2016) Graphene-like g-C3N4 nanosheets/sulfur as cathode for lithium-sulfur battery. Electrochim Acta 210:829–836

    CAS  Google Scholar 

  27. You R (2017) Research progress on improving the photocatalysis of graphite-C3N4 via O, S and P doping. J AdvPhys Chem 06(02):84–96

    CAS  Google Scholar 

  28. Wang H, Wang B, Bian Y, Dai L (2017) Enhancing photocatalytic activity of graphitic carbon nitride by codoping with P and C for efficient hydrogen generation. ACS Appl Mater Inter 9(26):21730–21737

    CAS  Google Scholar 

  29. Guo S, Tang Y, Xie Y, Tian C, Feng Q, Zhou W, Jiang B (2017) P-doped tubular g-C3N4 with surface carbon defects: universal synthesis and enhanced visible-light photocatalytic hydrogen production. Appl Catal B Environ 218:664–671

    CAS  Google Scholar 

  30. Liu Y, Liu P, Sun C, Wang T, Tao K, Gao D (2017) P dopants induced ferromagnetism in g-C3N4 nanosheets: experiments and calculations. Appl Phys Lett 110(22):222403–222408

    Google Scholar 

  31. Mattsson AE, Schultz PA, Desjarlais MP, Mattsson TR, Leung K (2004) Designing meaningful density functional theory calculations in materials science-a primer. Model Simul Mater Sci Eng 13(1):R1–R31

    Google Scholar 

  32. Kresse G, Joubert D (1999) From ultrasoft pseudopotentials to the projector augmented-wave method. Phy Rev B 59(3):1758–1775

    CAS  Google Scholar 

  33. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phy Rev B 41(11):7892–7895

    CAS  Google Scholar 

  34. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77(18):3865–3868

    CAS  PubMed  Google Scholar 

  35. Perdew JP, Parr RG, Levy M, Balduz JL (1982) Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys Rev Lett 49(23):1691–1694

    CAS  Google Scholar 

  36. Li S, Yang S, Shen D, Sun W, Shan X, Dong W, Chen Y, Zhang X, Mao Y, Tang S (2017) Polysulfide intercalation in bilayer-structured graphitic C3N4: a first-principles study. Phys Chem Chem Phys 19(48):32708–32714

    CAS  PubMed  Google Scholar 

  37. Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson JM, Domen K, Antonietti M (2008) A metal-free polymeric photocatalyst for hydrogen production from water under visible light. Nat Mater 8:76–80

  38. Duan J, Chen S, Jaroniec M, Qiao SZ (2015) Porous C3N4 nanolayers@N-graphene films as catalyst electrodes for highly efficient hydrogen evolution. ACS Nano 9(1):931–940

    CAS  PubMed  Google Scholar 

  39. Rong X, Qiu F, Rong J, Yan J, Zhao H, Zhu X, Yang D (2015) Synthesis of porous g-C3N4/La and enhanced photocatalytic activity for the degradation of phenol under visible light irradiation. J Solid State Chem 230:126–134

    CAS  Google Scholar 

  40. Xu Z, Yu X, Shan Y, Liu F, Zhang X, Chen K (2017) One-pot synthesis of phosphorus doped g-C3N4 with enhanced visible-light photocatalytic activity. J Inorg Mater 32(02):155–162

    Google Scholar 

  41. Goettmann F, Fischer A, Antonietti M, Thomas A (2006) Chemical synthesis of mesoporous carbon nitrides using hard templates and their use as a metal-free catalyst for Friedel-Crafts reaction of benzene. Angew Chem 45(27):4467–4471

    CAS  Google Scholar 

  42. Yan SC, Li ZS, Zou ZG (2009) Photodegradation performance of g-C3N4 fabricated by directly heating melamine. Langmuir 25(17):10397–10401

    CAS  PubMed  Google Scholar 

  43. Zhang L, Chen X, Guan J, Jiang Y, Hou T, Mu X (2013) Facile synthesis of phosphorus doped graphitic carbon nitride polymers with enhanced visible-light photocatalytic activity. Mater Res Bull 48(9):3485–3491

    CAS  Google Scholar 

  44. Hu S, Ma L, You J, Li F, Fan Z, Lu G, Liu D, Gui J (2014) Enhanced visible light photocatalytic performance of g-C3N4 photocatalysts co-doped with iron and phosphorus. Appl Surf Sci 311:164–171

    CAS  Google Scholar 

  45. Hu S, Ma L, Xie Y, Li F, Fan Z, Wang F, Wang Q, Wang Y, Kang X, Wu G (2015) Hydrothermal synthesis of oxygen functionalized S-P codoped g-C3N4 nanorods with outstanding visible light activity under anoxic conditions. Dalton T 44(48):20889–20897

    CAS  Google Scholar 

  46. Zhang Y, Mori T, Ye J, Antonietti M (2010) Phosphorus-doped carbon nitride solid: enhanced electrical conductivity and photocurrent generation. J Am Chem Soc 132(18):6294–6295

    CAS  PubMed  Google Scholar 

  47. Ma X, Lv Y, Xu J, Liu Y, Zhang R, Zhu Y (2012) A strategy of enhancing the photoactivity of g-C3N4 via doping of nonmetal elements: a first-principles study. J Phys Chem C 116(44):23485–23493

    CAS  Google Scholar 

  48. Marchal C, Cottineau T, Méndez-Medrano MG, Colbeau-Justin C, Caps V, Keller V (2018) Au/TiO2-g-C3N4 nanocomposites for enhanced photocatalytic H2 production from water under visible light irradiation with very low quantities of sacrificial agents. Adv Energy Mater 8(14):1702142–1702153

  49. Hu S, Ma L, You J, Li F, Fan Z, Wang F, Liu D, Gui J (2014) A simple and efficient method to prepare a phosphorus modified g-C3N4 visible light photocatalyst. RSC Adv 4(41):21657–21663

    CAS  Google Scholar 

  50. Guan Y, Li W, Xie X, Qu W, Shen J, Fu K, Guo C, Zhou S, Fan H, Chu Y, Chen R (2019) Preparation of TiO2/ CNTs composite coated separator and its application in Li-S battery. Chem J Chinese U 40(03):536–541

    CAS  Google Scholar 

  51. Li L, Chen L, Mukherjee S, Gao J, Sun H, Liu Z, Ma X, Gupta T, Singh CV, Ren W, Cheng H, Koratkar N (2017) Phosphorene as a polysulfide immobilizer and catalyst in high-performance lithium-sulfur batteries. Adv Mater 29(2):1602734–1602742

    Google Scholar 

  52. Zheng G, Yang Y, Cha JJ, Hong SS, Cui Y (2011) Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett 11(10):4462–4467

    CAS  PubMed  Google Scholar 

Download references

Funding

This work is supported by the National Natural Science Foundation of China under Nos. 51274119 and 51774175 and the Scientific Research Fund of Liaoning Provincial Education Department under Grant L2019lkyqn-03.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shaobin Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 2694 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Yang, S., Chen, Y. et al. Effect of phosphorous-doped graphitic carbon nitride on electrochemical properties of lithium-sulfur battery. Ionics 26, 5491–5501 (2020). https://doi.org/10.1007/s11581-020-03728-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-020-03728-w

Keywords

Navigation