Skip to main content

Advertisement

Log in

High-performance Sn-based metal-organic frameworks anode materials synthesized by flexible and controllable methods for lithium-ion batteries

  • Short Communication
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Sn-based materials have great potential as anode materials for lithium-ion batteries. However, large volume expansion hinders the development of Sn-based materials. With the special structure of the metal-organic frameworks (MOFs), the electrode materials can maintain structural stability during the Li+ reversible insertion/exsertion process. Here, Sn-based MOFs anode materials with different morphologies are prepared by two different flexible and controllable methods, reflux method (named as reflux Sn-MOF), and hydrothermal method (named as hydrothermal Sn-MOF). The structures and electrochemical properties of the as-prepared samples are estimated by scanning electron microscopy, powder X-ray diffraction, thermogravimetric analysis, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, cyclic voltammetry, charge-discharge characterizations, etc. The reflux Sn-MOF materials exhibit better electrochemical properties than the hydrothermal one for anode materials. The results reveal that the reflux Sn-MOF anode material shows a higher lithium storage capacity of 613 mAh g−1 with the Coulombic efficiency close to 99%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D (2011) Challenges in the development of advanced li-ion batteries: a review. Energy Environ Sci 4(9):3243–3262

    Article  CAS  Google Scholar 

  2. Jiang Y, Hu M, Zhang D, Yuan T, Sun W, Xu B, Yan M (2014) Transition metal oxides for high performance sodium ion battery anodes. Nano Energy 5:60–66

    Article  CAS  Google Scholar 

  3. Li F, Wu S, Li D, Zhang T, He P, Yamada A, Zhou H (2015) The water catalysis at oxygen cathodes of lithium-oxygen cells. Nat Commun 6:7843–7850

    Article  CAS  Google Scholar 

  4. Tao W, Wang P, You Y, Park K, Wang C-Y, Li Y-K, Cao F-F, Xin S (2019) Strategies for improving the storage performance of silicon-based anodes in lithium-ion batteries. Nano Res 12(8):1739–1749

    Article  CAS  Google Scholar 

  5. Wan F, Guo JZ, Zhang XH, Zhang JP, Sun HZ, Yan Q, Han DX, Niu L, Wu XL (2016) In situ binding Sb nanospheres on graphene via oxygen bonds as superior anode for ultrafast sodium-ion batteries. ACS Appl Mater Interfaces 8(12):7790–7799

    Article  CAS  Google Scholar 

  6. Wan F, Lü H-Y, Wu X-L, Yan X, Guo J-Z, Zhang J-P, Wang G, Han D-X, Niu L (2016) Do the bridging oxygen bonds between active Sn nanodots and graphene improve the Li-storage properties? Energy Storage Mater 5:214–222

    Article  Google Scholar 

  7. Wang J, Liu D-H, Wang Y-Y, Hou B-H, Zhang J-P, Wang R-S, Wu X-L (2016) Dual-carbon enhanced silicon-based composite as superior anode material for lithium ion batteries. J Power Sources 307:738–745

    Article  CAS  Google Scholar 

  8. Xu Q, Sun JK, Yu ZL, Yin YX, Xin S, Yu SH, Guo YG (2018) SiOx encapsulated in graphene bubble film: an ultrastable li-ion battery anode. Adv Mater 30(25):1707430

    Article  Google Scholar 

  9. Oh J, Jin D, Kim K, Song D, Lee YM, Ryou MH (2017) Improving the cycling performance of lithium-ion battery Si/graphite anodes using a soluble polyimide binder. Acs Omega 2(11):8438–8444

    Article  CAS  Google Scholar 

  10. Kim MG, Sim S, Cho J (2010) Novel core-shell Sn-Cu anodes for lithium rechargeable batteries prepared by a redox-transmetalation reaction. Adv Mater 22(45):5154–5158

    Article  CAS  Google Scholar 

  11. Bian Z, Li A, He RY, Song HH, Chen XH, Zhou JS, Ma ZK (2018) Metal-organic framework-templated porous SnO/C polyhedrons for high-performance lithium-ion batteries. Electrochim Acta 289:389–396

    Article  CAS  Google Scholar 

  12. Du Z, Zhang S, Zhao J, Fang Y (2012) Investigation of immiscible Sn–Zn coatings with two-layer microstructure as anode material for li-ion battery. J Appl Electrochem 42(7):477–482

    Article  CAS  Google Scholar 

  13. Yu Y, Gu L, Lang X, Zhu C, Fujita T, Chen M, Maier J (2011) Li storage in 3D nanoporous Au-supported nanocrystalline tin. Adv Mater 23(21):2443–2447

    Article  CAS  Google Scholar 

  14. Guo YY, Zeng XQ, Zhang Y, Dai ZF, Fan HS, Huang Y, Zhang WN, Zhang H, Lu J, Huo FW, Yan QY (2017) Sn nanoparticles encapsulated in 3D nanoporous carbon derived from a metal-organic framework for anode material in lithium-ion batteries. ACS Appl Mater Interfaces 9(20):17173–17178

    Google Scholar 

  15. Song JS, Cho GB, Ahn HJ, Kim HS, Ahn JH, Cho KK (2016) Electrochemical performance of Sn/SnO nanoparticles with core-shell structure as anode materials for sodium-ion and lithium-ion batteries. J Nanosci Nanotechnol 16(10):10735–10739

    Article  CAS  Google Scholar 

  16. Pan Z-Z, Yan Y, Cui N, Xie J-C, Zhang Y-B, Mu W-S, Hao C (2018) Ionic liquid-assisted preparation of Sb2S3/reduced graphene oxide nanocomposite for sodium-ion batteries. ACS Adv Mater Interfaces 5(5):1701481

    Article  Google Scholar 

  17. Liu Y, Zhang N, Jiao L, Tao Z, Chen J (2015) Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv Funct Mater 25(2):214–220

    Article  CAS  Google Scholar 

  18. Xu Y, Liu Q, Zhu Y, Liu Y, Langrock A, Zachariah MR, Wang C (2013) Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett 13(2):470–474

    Article  CAS  Google Scholar 

  19. Yan X, Ye H, Wu X-L, Zheng Y-P, Wan F, Liu M, Zhang X-H, Zhang J-P, Guo Y-G (2017) Three-dimensional carbon nanotube networks enhanced sodium trimesic: a new anode material for sodium ion batteries and Na-storage mechanism revealed by ex situ studies. J Mater Chem A 5(32):16622–16629

    Article  CAS  Google Scholar 

  20. Yan X, Fan C-Y, Yang X, Wang Y-Y, Hou B-H, Pang W-L, Wu X-L (2019) A cation/anion-dually active metal-organic complex with 2D lamellar structure as anode material for Li/Na-ion batteries. Mater Today Energy 13:302–307

    Article  Google Scholar 

  21. Tian M, Pei F, Yao M, Fu Z, Lin L, Wu G, Xu G, Kitagawa H, Fang X (2019) Ultrathin MOF nanosheet assembled highly oriented microporous membrane as an interlayer for lithium-sulfur batteries. Energy Storage Mater 21:14–21

    Article  Google Scholar 

  22. Zhou X, Chen S, Yang J, Bai T, Ren Y, Tian H (2017) Metal-organic frameworks derived okra-like SnO2 encapsulated in nitrogen-doped graphene for lithium ion battery. ACS Appl Mater Interfaces 9(16):14309–14318

    Article  CAS  Google Scholar 

  23. Jin Y, Zhao C, Sun Z, Lin Y, Chen L, Wang D, Shen C (2016) Facile synthesis of Fe-MOF/RGO and its application as a high performance anode in lithium-ion batteries. RSC Adv 6(36):30763–30768

    Article  CAS  Google Scholar 

  24. Shen L, Song H, Wang C (2017) Metal-organic frameworks triggered high-efficiency li storage in Fe-based polyhedral nanorods for lithium-ion batteries. Electrochim Acta 235:595–603

    Article  CAS  Google Scholar 

  25. Wu HB, Lou XW (2017) Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: promises and challenges. Sci Adv 3(12):9252

    Article  Google Scholar 

  26. Dai R, Sun W, Lv LP, Wu M, Liu H, Wang G, Wang Y (2017) Bimetal-organic-framework derivation of ball-cactus-like Ni-Sn-P@C-CNT as long-cycle anode for lithium ion battery. Small 13(27):1700521–1700532

    Article  Google Scholar 

  27. Mehtab T, Yasin G, Arif M, Shakeel M, Korai RM, Nadeem M, Muhammad N, Lu X (2019) Metal-organic frameworks for energy storage devices: batteries and supercapacitors. J Energy Storage 21:632–646

    Article  Google Scholar 

  28. Zhu W, Xiang G, Shang J, Guo J, Motevalli B, Durfee P, Agola JO, Coker EN, Brinker CJ (2018) Versatile surface functionalization of metal-organic frameworks through direct metal coordination with a phenolic lipid enables diverse applications. Adv Funct Mater 28(16):1705274–17005286

    Article  Google Scholar 

  29. Wang H, Wang M, Li B, Yang X, Safarova K, Zboril R, Rogach AL, Leung MKH (2014) Hydrothermal synthesis and electrochemical properties of tin titanate nanowires coupled with SnO2 nanoparticles for li-ion batteries. CrystEngComm 16(32):7529–7535

    Article  CAS  Google Scholar 

  30. Wang X, Liu L, Makarenko T, Jacobson AJ (2010) Acentric and centric interpenetrations of an anionic framework mediated by cation sizes: the alkali-metal tin(II) benzenedicarboxylates A2Sn2(bdc)3(H2O)x(A = Li, Na, K, Rb, Cs). Crystal Growth Des 10(4):1960–1965

    Article  CAS  Google Scholar 

  31. Chen X-T, Wang K-X, Zhai Y-B, Zhang H-J, Wu X-Y, Wei X, Chen J-S (2014) A facile one-pot reduction method for the preparation of a SnO/SnO2/GNS composite for high performance lithium ion batteries. Dalton Trans 43(8):3137–3143

    Article  CAS  Google Scholar 

  32. Hwang SM, Lim Y-G, Kim J-G, Heo Y-U, Lim JH, Yamauchi Y, Park M-S, Kim Y-J, Dou SX, Kim JH (2014) A case study on fibrous porous SnO2 anode for robust, high-capacity lithium-ion batteries. Nano Energy 10:53–62

    Article  CAS  Google Scholar 

  33. Shi X, Song H, Li A, Chen X, Zhou J, Ma Z (2017) Sn–Co nanoalloys embedded in porous N-doped carbon microboxes as a stable anode material for lithium-ion batteries. J Mater Chem A 5(12):5873–5879

    Article  CAS  Google Scholar 

  34. Dai R, Sun W, Wang Y (2016) Ultrasmall tin nanodots embedded in nitrogen-doped mesoporous carbon: metal-organic-framework derivation and electrochemical application as highly stable anode for lithium ion batteries. Electrochim Acta 217:123–131

    Article  CAS  Google Scholar 

  35. Liang XQ, Wang JJ, Zhang SY, Wang LY, Wang WF, Li LY, Wang HF, Huang D, Zhou WZ, Guo J (2019) Fabrication of uniform Si-incorporated SnO2 nanoparticles on graphene sheets as advanced anode for li-ion batteries. Appl Surf Sci 476:28–35

    Article  CAS  Google Scholar 

  36. Kim M, Choi I, Kim JJ (2019) Facile electrochemical synthesis of heterostructured amorphous-Sn@CuxO nanowire anode for li-ion batteries with high stability and rate-performance. Appl Surf Sci 479:225–233

    Article  CAS  Google Scholar 

  37. Wu N, Wang W, Kou LQ, Zhang X, Shi YR, Li TH, Li F, Zhou JM, Wei Y (2018) Enhanced li storage stability induced by locating Sn in metal-organic frameworks. Chem-Eur J 24(24):6330–6333

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21603055 and 21601149), the Natural Science Foundation of Hebei province (Grant Nos. B2017205149), the Hebei Provincial University Young Talent Program (Grant Nos. BJ2017042 and QN2016091), Hunan Provincial Education Department, China (16B253), and Hunan 2011 Collaborative Innovation Center of Chemical Engineering & Technology with Environmental Benignity and Effective Resource Utilization.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Na Wu, Feng Li or Zhe Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOC 768 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, N., Jia, T., Shi, YR. et al. High-performance Sn-based metal-organic frameworks anode materials synthesized by flexible and controllable methods for lithium-ion batteries. Ionics 26, 1547–1553 (2020). https://doi.org/10.1007/s11581-019-03392-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-019-03392-9

Keywords

Navigation