Skip to main content

Advertisement

Log in

Preparation and electrochemical performance of electrospun biomass-based activated carbon nanofibers

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Biomass-based nanofibers were prepared by electrospinning a mixture of polyacrylonitrile and acid-treated biomass from industrial hemp straw. The as-prepared biomass-based nanofibers were then carbonized and activated by high-temperature carbonization and KOH to obtain the activated biomass-based carbon nanofibers. The scanning electron microscopy images show that the precursors and carbon nanofibers are composed of fibers 179 nm in diameter, and the nitrogen adsorption/desorption measurements indicate that the carbon nanofibers possess a high-specific surface area of 2348.73 m2·g−1. The carbon nanofibers exhibit excellent electrical performance. The specific capacitance is as high as 244.8 F·g−1 at a current density of 1 A·g−1. The specific capacitance remains at 96% after 3000 cycles of charge and discharge at a current density of 2 A·g−1, showing excellent cycle stability. This work provides new ideas for the future development of supercapacitors electrode materials and enhances the development of biomass energy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Lee HM, Kim HG, Kang SJ, Park SJ, An KH, Kim BJ (2015) Effects of pore structures on electrochemical behaviors of polyacrylonitrile (PAN)-based activated carbon nanofibers. J Ind Eng Chem 21(1):736–740

    Article  CAS  Google Scholar 

  2. Inagaki M, Yang Y, Kang F (2012) Carbon nanofibers prepared via electrospinning. Adv Mater 24(19):2547–2566

    Article  CAS  PubMed  Google Scholar 

  3. Pandolfo AG, Hollenkamp AF (2006) Carbon properties and their role in supercapacitors. J Power Sources 157(1):11–27

    Article  CAS  Google Scholar 

  4. Jung MJ, Jeong E, Kim Y, Lee YS (2013) Influence of the textual properties of activated carbon nanofibers on the performance of electric double-layer capacitors. J Ind Eng Chem 19(4):1315–1319

    Article  CAS  Google Scholar 

  5. Ma C, Wang R, Xie Z, Zhang H, Li Z, Shi J (2017) Preparation and molten salt-assisted KOH activation of porous carbon nanofibers for use as supercapacitor electrodes. J Porous Mater 24(6):1437–1445

    Article  CAS  Google Scholar 

  6. Lu P, Xue D, Yang H, Liu Y(2013)Supercapacitor and nanoscale research towards electrochemical energy storage.Int J Smart Nano Mater 4(1):2–26

    Article  CAS  Google Scholar 

  7. Ke Q, Wang J (2016) Graphene-based materials for supercapacitor electrodes – a review. J Mater 2(1):37–54

    Google Scholar 

  8. Choi BG, Hong J, Hong WH, Hammond PT, Park HS (2011) Facilitated ion transport in all-solid-state flexible supercapacitors. ACS Nano 5(9):7205–7213

    Article  CAS  PubMed  Google Scholar 

  9. Frackowiak E (2007) Carbon materials for supercapacitor application. Phys Chem Chem Phys 9(15):1774–1785

    Article  CAS  PubMed  Google Scholar 

  10. Chen H, Guo YC, Wang F, Wang G, Qi PR, Guo XH, Dai B, Yu F (2017) An activated carbon derived from tobacco waste for use as a supercapacitor electrode material. New Carbon Mater 32(6):592–599

    Article  Google Scholar 

  11. Tang D, Hu S, Dai F, Yi R, Gordin ML, Chen S, Song J, Wang D (2016) Self-templated synthesis of mesoporous carbon from carbon tetrachloride precursor for supercapacitor electrodes. ACS Appl Mater Interfaces 8(11):6779–6783

    Article  CAS  PubMed  Google Scholar 

  12. Zhao H, Wang L, Jia D, Xia W, Li J, Guo Z (2014) Coal based activated carbon nanofibers prepared by electrospinning. J Mater Chem A 2(24):9338–9344

    Article  CAS  Google Scholar 

  13. Lu X, Hu Y, Wang L, Guo Q, Chen S, Chen S, Hou H, Song Y (2016) Macroporous carbon/nitrogen-doped carbon nanotubes/polyaniline nanocomposites and their application in supercapacitors. Electrochim Acta 189(12):158–165

    Article  CAS  Google Scholar 

  14. Zou JZ, Zeng XR, Xiong XB, Tang HL, Li L, Liu Q, Li ZQ (2007) Preparation of vapor grown carbon fibers by microwave pyrolysis chemical vapor deposition. Carbon 45(4):828–832

    Article  CAS  Google Scholar 

  15. Giraud I, Franceschi-Messant S, Perez E, Lacabanne C, Dantras E (2013) Preparation of aqueous dispersion of thermoplastic sizing agent for carbon fiber by emulsion/solvent evaporation. Appl Surf Sci 266(266):94–99

    Article  CAS  Google Scholar 

  16. Zhang Z, Li X, Wang C, Fu S, Liu Y, Shao C (2009) Polyacrylonitrile and carbon nanofibers with controllable nanoporous structures by electrospinning. Macromol Mater Eng 294(10):673–678

    Article  CAS  Google Scholar 

  17. Kim C, Yang KS (2003) Electrochemical properties of carbon nanofiber web as an electrode for supercapacitor prepared by electrospinning. Appl Phys Lett 83(6):1216–1218

    Article  CAS  Google Scholar 

  18. Wang P, Zhang D, Ma F, Ou Y, Chen QN, Xie S, Li J (2012) Mesoporous carbon nanofibers with a high surface area electrospun from thermoplastic polyvinylpyrrolidone. Nanoscale 4(22):7199–7204

    Article  CAS  PubMed  Google Scholar 

  19. Fatema UK, Uddin AJ, Uemura K, Gotoh Y (2011) Fabrication of carbon fibers from electrospun poly(vinyl alcohol) nanofibers. Text Res J 81(7):659–672

    Article  CAS  Google Scholar 

  20. Bai Y, Huang ZH, Yu XL, Kang F (2014) Graphene oxide-embedded porous carbon nanofiber webs by electrospinning for capacitive deionization. Colloids Surf A Physicochem Eng Asp 444(4):153–158

    Article  CAS  Google Scholar 

  21. Zhang YQ, Shi GF, Chen B, Wang GY, Guo TC (2018) Biomass-based carbon nanofibers prepared by electrospinning for supercapacitor. J Nanosci Nanotechnol 18(8):5731–5737

    Article  CAS  PubMed  Google Scholar 

  22. Herou S, Schlee P, Jorge AB, Titirici M (2018) Biomass-derived electrodes for flexible supercapacitors. Curr Opin in Green Sustain Chem 9:18–24

    Article  Google Scholar 

  23. Zhao X, Li P, Yang S, Zhang Q, Luo H (2017) Preparation of porous carbon materials via direct carbonization of waste mineral water bottles and their super capacitive properties. Ionics 23(5):1–10

    Article  CAS  Google Scholar 

  24. Qiu SL, Wang CS, Wang YT, Liu CG, Chen XY, Xie HF, Huang YA, Cheng RS (2011) Effects of graphene oxides on the cure behaviors of a tetrafunctional epoxy resin. Express Polym Lett 5(9):809–818

    Article  CAS  Google Scholar 

  25. Paredes JI, Villar-Rodil S, Martínez-Alonso A, Tascón JMD (2008) Graphene oxide dispersions in organic solvents. Langmuir 24(19):10560–10564

    Article  CAS  PubMed  Google Scholar 

  26. Dreyer D R (2015) The chemistry of graphene oxide.Chem Soc Rev, 39(1): p. 228–240.

    Article  Google Scholar 

  27. Chua CK, Pumera M (2014) Chemical reduction of graphene oxide: a synthetic chemistry viewpoint. Chem Soc Rev 43(1):291–312

    Article  CAS  PubMed  Google Scholar 

  28. Zhang D, Han M, Wang B, Li Y, Lei L, Wang K, Wang Y, Zhang L, Feng H (2017) Superior supercapacitors based on nitrogen and sulfur co-doped hierarchical porous carbon: excellent rate capability and cycle stability. J Power Sources 358:112–120

    Article  CAS  Google Scholar 

  29. Ma C, Wang R, Xie Z, Zhang H, Li Z, Shi J (2017) Preparation and molten salt-assisted KOH activation of porous carbon nanofibers for use as supercapacitor electrodes. J Porous Mater 1–9

  30. Rantanen J (2007) Process analytical applications of Raman spectroscopy. J Pharm Pharmacol 59(2):171–177

    Article  CAS  PubMed  Google Scholar 

  31. Pelletier M J (1999) Analytical applications of Raman spectroscopy. Blackwell Science, Oxford

  32. Lu H, Dai W, Zheng M, Li N, Ji G, Cao J (2012) Electrochemical capacitive behaviors of ordered mesoporous carbons with controllable pore sizes. J Power Sources 209(7):243–250

    Article  CAS  Google Scholar 

  33. OuY J, Peng C, Lang JW, Zhu DD, Yan XB (2014) Hierarchical porous activated carbon produced from spinach leaves as an electrode material for an electric double layer capacitor. New Carbon Mater 77(3):1196–1196

    Article  CAS  Google Scholar 

  34. Wang X, Yang Z, Lingling W, Chong Z, Jia-Xing J (2015) Nitrogen-rich conjugated microporous polymers: impact of building block on porosity and gas adsorption. J Mater Chem A 3(42):21185–21193

    Article  CAS  Google Scholar 

  35. Jiang JX, Su F, Trewin A, Wood CD, Campbell NL, Niu H et al (2007) Conjugated microporous poly (aryleneethynylene) networks. Angew Chem Int Ed 46(7):8574–8578

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (21567015), and the National Key Research and Development Program of China (2016YFC0202900).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shi, G., Liu, C., Wang, G. et al. Preparation and electrochemical performance of electrospun biomass-based activated carbon nanofibers. Ionics 25, 1805–1812 (2019). https://doi.org/10.1007/s11581-018-2675-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-018-2675-3

Keywords

Navigation