Skip to main content
Log in

Modelling of the limiting current density of an electrodialysis process by response surface methodology

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Electrodialysis is an electro-membrane process for desalination, concentration, and separation in electric fields. In this process, the operating currents are limited by the concentration polarization phenomena and the limiting current density. Usually, this parameter depends on membrane and solution properties as well as on the electrodialysis stack construction. In this research paper, we will apply the Box–Behnken design in combination with response surface methodology to the development of a predictive limiting current density model. We will also study the effects of three variables related to solution composition (calcium, sulfate, and bicarbonate concentrations) on this parameter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Ghyselbrecht K, Huygebaert M, Van der Bruggen B, Ballet R, Meesschaert B, Pinoy L (2013) Desalination of an industrial saline water with conventional and bipolar membrane electrodialysis. Desalination 318:9–18. doi:10.1016/j.desal.2013.03.020

    Article  CAS  Google Scholar 

  2. Ghyselbrecht K, Silva A, Van der Bruggen B, Boussu K, Meesschaert B, Pinoy L (2014) Desalination feasibility study of an industrial NaCl stream by bipolar membrane electrodialysis. J Environ Manag 140:69–75

    Article  CAS  Google Scholar 

  3. Moon S-H, Yun S-H (2014) Process integration of electrodialysis for a cleaner environment. Current Opinion in Chemical Engineering 4:25–31

    Article  Google Scholar 

  4. Xu T, Huang C (2008) Electrodialysis-based separation technologies: a critical review. AICHE J 54(12):3147–3159. doi:10.1002/aic.11643

    Article  CAS  Google Scholar 

  5. Banasiak LJ, Schäfer AI (2009) Removal of boron, fluoride and nitrate by electrodialysis in the presence of organic matter. J Membr Sci 334(1–2):101–109

    Article  CAS  Google Scholar 

  6. Dermentzis K (2010) Removal of nickel from electroplating rinse waters using electrostatic shielding electrodialysis/electrodeionization. J Hazard Mater 173(1–3):647–652. doi:10.1016/j.jhazmat.2009.08.133

    Article  CAS  Google Scholar 

  7. Karimi L, Ghassemi A (2016) An empirical/theoretical model with dimensionless numbers to predict the performance of electrodialysis systems on the basis of operating conditions. Water Res 98:270–279. doi:10.1016/j.watres.2016.04.014

    Article  CAS  Google Scholar 

  8. Káňavová N, Machuča L, Tvrzník D (2014) Determination of limiting current density for different electrodialysis modules. Chem Pap 68(3):324–329

    Google Scholar 

  9. Krol JJ, Wessling M, Strathmann H (1999) Concentration polarization with monopolar ion exchange membranes: current–voltage curves and water dissociation. J Membr Sci 162(1–2):145–154. doi:10.1016/S0376-7388(99)00133-7

    Article  CAS  Google Scholar 

  10. Meng H, Deng D, Chen S, Zhang G (2005) A new method to determine the optimal operating current (i lim') in the electrodialysis process. Desalination 181(1):101–108

    Article  CAS  Google Scholar 

  11. Geraldes V, Afonso MD (2010) Limiting current density in the electrodialysis of multi-ionic solutions. J Membr Sci 360(1–2):499–508. doi:10.1016/j.memsci.2010.05.054

    Article  CAS  Google Scholar 

  12. Tanaka Y (2005) Limiting current density of an ion-exchange membrane and of an electrodialyzer. J Membr Sci 266(1–2):6–17. doi:10.1016/j.memsci.2005.05.005

    Article  CAS  Google Scholar 

  13. Tanaka Y (2006) Irreversible thermodynamics and overall mass transport in ion-exchange membrane electrodialysis. J Membr Sci 281(1–2):517–531. doi:10.1016/j.memsci.2006.04.022

    Article  CAS  Google Scholar 

  14. Tanaka Y (2012) Ion-exchange membrane electrodialysis program and its application to multi-stage continuous saline water desalination. Desalination 301:10–25. doi:10.1016/j.desal.2012.06.007

    Article  CAS  Google Scholar 

  15. Nakayama A, Sano Y, Bai X, Tado K (2017) A boundary layer analysis for determination of the limiting current density in an electrodialysis desalination. Desalination 404:41–49. doi:10.1016/j.desal.2016.10.013

    Article  CAS  Google Scholar 

  16. Wang Y, Huang C, Xu T (2010) Optimization of electrodialysis with bipolar membranes by using response surface methodology. J Membr Sci 362(1–2):249–254. doi:10.1016/j.memsci.2010.06.049

    Article  CAS  Google Scholar 

  17. Zazouli MA, Dianati Tilaki RA, Safarpour M (2014) Modeling nitrate removal by nano-scaled zero-valent iron using response surface methodology. Health Scope 3(3):e15728

    Article  Google Scholar 

  18. Fouladitajar A, Ashtiani FZ, Dabir B, Rezaei H, Valizadeh B (2014) Response surface methodology for the modeling and optimization of oil-in-water emulsion separation using gas sparging assisted microfiltration. Environmental Science and Pollution Research:1–17

  19. Mourabet M, El Rhilassi A, El Boujaady H, Bennani-Ziatni M, Taitai A (2014) Use of response surface methodology for optimization of fluoride adsorption in an aqueous solution by Brushite. Arab J Chem. doi:10.1016/j.arabjc.2013.12.028

  20. Mourabet M, El Rhilassi A, El Boujaady H, Bennani-Ziatni M, El Hamri R, Taitai A (2012) Removal of fluoride from aqueous solution by adsorption on Apatitic tricalcium phosphate using Box–Behnken design and desirability function. Appl Surf Sci 258(10):4402–4410. doi:10.1016/j.apsusc.2011.12.125

    Article  CAS  Google Scholar 

  21. Boubakri A, Hafiane A, Bouguecha SAT (2014) Application of response surface methodology for modeling and optimization of membrane distillation desalination process. J Ind Eng Chem 20(5):3163–3169. doi:10.1016/j.jiec.2013.11.060

    Article  CAS  Google Scholar 

  22. Boubakri A, Bouchrit R, Hafiane A, Bouguecha SA-T (2014) Fluoride removal from aqueous solution by direct contact membrane distillation: theoretical and experimental studies. Environ Sci Pollut Res:1–9

  23. Ferreira SLC, Bruns RE, Ferreira HS, Matos GD, David JM, Brandão GC, da Silva EGP, Portugal LA, dos Reis PS, Souza AS, dos Santos WNL (2007) Box-Behnken design: an alternative for the optimization of analytical methods. Anal Chim Acta 597(2):179–186. doi:10.1016/j.aca.2007.07.011

    Article  CAS  Google Scholar 

  24. Aslan N, Cebeci Y (2007) Application of Box–Behnken design and response surface methodology for modeling of some Turkish coals. Fuel 86(1–2):90–97. doi:10.1016/j.fuel.2006.06.010

    Article  CAS  Google Scholar 

  25. Isgoren M, Gengec E, Veli S (2016) Evaluation of wet air oxidation variables for removal of organophosphorus pesticide malathion using Box-Behnken design. Water Sci Technol. doi:10.2166/wst.2016.479

  26. Sahoo C, Gupta AK (2012) Optimization of photocatalytic degradation of methyl blue using silver ion doped titanium dioxide by combination of experimental design and response surface approach. J Hazard Mater 215–216:302–310. doi:10.1016/j.jhazmat.2012.02.072

    Article  Google Scholar 

  27. Ben Sik Ali M, Hafiane A, Dhahbi M, Hamrouni B (2014) Desalination of brackish water by electrodialysis: effects of operational parameters and water composition on process efficiency. In: Daniels JA (ed) Advances in environmental research. Volume 32. Advances in environmental research. Nova Science Publishers, New York, p 372

    Google Scholar 

  28. Alvarado L, Chen A (2014) Electrodeionization: principles, strategies and applications. Electrochim Acta 132:583–597. doi:10.1016/j.electacta.2014.03.165

    Article  CAS  Google Scholar 

  29. Zerdoumi R, Oulmi K, Benslimane S (2014) Electrochemical characterization of the CMX cation exchange membrane in buffered solutions: effect on concentration polarization and counterions transport properties. Desalination 340:42–48. doi:10.1016/j.desal.2014.02.014

    Article  CAS  Google Scholar 

  30. Doyen A, Roblet C, L’Archevêque-Gaudet A, Bazinet L (2014) Mathematical sigmoid-model approach for the determination of limiting and over-limiting current density values. J Membr Sci 452:453–459

    Article  CAS  Google Scholar 

  31. Ben Sik Ali M, Mnif A, Hamrouni B, Dhahbi M (2010) Electrodialytic desalination of brackish water: effect of process parameters and water characteristics. Ionics 16(7):621–629. doi:10.1007/s11581-010-0441-2

    Article  Google Scholar 

  32. Baker RW (2004) Membrane technology and applications, 2nd edn. John Wiley & Sons, Ltd., England

    Book  Google Scholar 

  33. Noble RD, Stern SA (1995) Membrane separations technologies principles and applications, Membrane science and technology series, vol 2. Elsevier Science B.V., Amsterdam

  34. Strathmann H (2010) Electrodialysis, a mature technology with a multitude of new applications. Desalination 264(3):268–288. doi:10.1016/j.desal.2010.04.069

    Article  CAS  Google Scholar 

  35. Nikonenko VV, Kovalenko AV, Urtenov MK, Pismenskaya ND, Han J, Sistat P, Pourcelly G (2014) Desalination at overlimiting currents: state-of-the-art and perspectives. Desalination 342:85–106

    Article  CAS  Google Scholar 

  36. Tanaka Y (2002) Current density distribution, limiting current density and saturation current density in an ion-exchange membrane electrodialyzer. J Membr Sci 210(1):65–75

    Article  CAS  Google Scholar 

  37. Lee HJ, Sarfert F, Strathmann H, Moon SH (2002) Designing of an electrodialysis desalination plant. Desalination 142(3):267–286

    Article  CAS  Google Scholar 

  38. Długołęcki P, Anet B, Metz SJ, Nijmeijer K, Wessling M (2010) Transport limitations in ion exchange membranes at low salt concentrations. J Membr Sci 346(1):163–171. doi:10.1016/j.memsci.2009.09.033

    Article  Google Scholar 

  39. Baş D, Boyacı İH (2007) Modeling and optimization I: usability of response surface methodology. J Food Eng 78(3):836–845. doi:10.1016/j.jfoodeng.2005.11.024

    Article  Google Scholar 

  40. Kwak J-S (2005) Application of Taguchi and response surface methodologies for geometric error in surface grinding process. Int J Mach Tools Manuf 45(3):327–334. doi:10.1016/j.ijmachtools.2004.08.007

    Article  Google Scholar 

  41. Zuorro A, Fidaleo M, Lavecchia R (2013) Response surface methodology (RSM) analysis of photodegradation of sulfonated diazo dye Reactive Green 19 by UV/H2O2 process. J Environ Manag 127:28–35. doi:10.1016/j.jenvman.2013.04.023

    Article  CAS  Google Scholar 

  42. Šumić Z, Vakula A, Tepić A, Čakarević J, Vitas J, Pavlić B (2016) Modeling and optimization of red currants vacuum drying process by response surface methodology (RSM). Food Chem 203:465–475. doi:10.1016/j.foodchem.2016.02.109

    Article  Google Scholar 

  43. Sohrabi S, Akhlaghian F (2016) Modeling and optimization of phenol degradation over copper-doped titanium dioxide photocatalyst using response surface methodology. Process Saf Environ Prot 99:120–128. doi:10.1016/j.psep.2015.10.016

    Article  CAS  Google Scholar 

  44. Ben Sik Ali M, Hamrouni B (2016) Development of a predictive model of the limiting current density of an electrodialysis process using response surface methodology. Membrane Water Treatment 7(2):127–141. doi:10.12989/mwt.2016.7.2.127

    Article  Google Scholar 

  45. Strathmann H (2004) Ion-exchange membranes separation processes, vol 9. Membrane Science and Technology Series. Elsevier B.V, Amsterdam

    Google Scholar 

  46. Cavazzuti M (2012) Optimization methods: from theory to design scientific and technological aspects in mechanics. Springer Science & Business Media

  47. Wang Y, Huang C, Xu T (2010) Optimization of electrodialysis with bipolar membranes by using response surface methodology. J Membr Sci 362(1-2):249-254

  48. Ben Sik Ali M, Mnif A, Hamrouni B, Dhahbi M, (2010) Electrodialytic desalination of brackish water: effect of process parameters and water characteristics. Ionics 16(7):621-629

  49. Lee H-J, Strathmann H, Moon S-H (2006) Determination of the limiting current density in electrodialysis desalination as an empirical function of linear velocity. Desalination 190(1-3):43-50

Download references

Acknowledgements

The authors are sincerely grateful to Dr. Chaouki M’kaddem, Senior Teacher of English at the Ministry of Education of Tunisia, for proofreading and editing our manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mourad Ben Sik Ali.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Sik Ali, M., Mnif, A. & Hamrouni, B. Modelling of the limiting current density of an electrodialysis process by response surface methodology. Ionics 24, 617–628 (2018). https://doi.org/10.1007/s11581-017-2214-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2214-7

Keywords

Navigation