Skip to main content
Log in

Chromate-selective electrodes prepared by using calix[4]arenes for the speciation of Cr(VI) and Cr(III)

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

The calix[4]arene and its mono-, di-, tri-, and tetra-acryloyl esters were used as suitable ionophores for Cr(VI) species to develop poly(vinyl chloride) (PVC) membrane electrodes. The influence of membrane contents and pH on the potentiometric response of the electrodes was described. Five novel chromate-selective PVC membrane electrodes displayed close to Nernstian behavior with slopes of 53–62 mV/decade of hydrogen chromate ion concentration in the dynamic range of 1.0 × 10−6 and 1.0 × 10−2 M at pH 1.0. Other response characteristics of these electrodes such as response time (~10 s), lifetime (>12 months), and detection limit (6.2 × 10−7 M) were identified, and the selectivity coefficients towards various anions were determined by using fixed interference method. Moreover, the proposed electrodes were successfully used for speciation of Cr(VI) and Cr(III) and for the potentiometric titration of Cr(VI) species with standard Fe(II) solution as an indicator electrode.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Gupta VK, Ganjali MR, Norouzi P, Khani H, Nayak A, Agarwal S (2011) Electrochemical analysis of some toxic metals by ion–selective electrodes. Crit Rev Anal Chem 41:282–313

    Article  CAS  Google Scholar 

  2. Ouyang R, Zhang W, Zhou S, Xue ZL, Xu L, Gu Y, Miao Y (2013) Improved bi film wrapped single walled carbon nanotubes forultrasensitive electrochemical detection of trace Cr(VI). Electrochim Acta 113:686–693

    Article  CAS  Google Scholar 

  3. Katz SA, Salem S (2006) The toxicity of chromium with respect to its chemical speciation: a review. J Appl Toxicol 13:217–224

    Article  Google Scholar 

  4. Gupta VK, Chandra R, Tyagi I, Verma M (2016) Removal of hexavalent chromium ions using CuO nanoparticles for water purification applications. J Colloid Interface Sci 478:54–62

    Article  CAS  Google Scholar 

  5. Mungray AA, Murthy ZVP (2012) Comparative performance study of four nanofiltration membranes in the separation of mercury and chromium. Ionics 18(8):811–816

    Article  CAS  Google Scholar 

  6. Yari A, Bagheri H (2009) Determination of Cr(VI) with selective sensing of Cr(VI) anions by a PVC-membrane electrode based on quinaldine red. J Chin Chem Soc 56:289–295

    Article  CAS  Google Scholar 

  7. Wang LL, Wang JQ, Zheng ZX, Xiao P (2010) Cloud point extraction combined with high-performance liquid chromatography for speciation of chromium(III) and chromium(VI) in environmental sediment samples. J Hazard Mater 177:114–118

    Article  CAS  Google Scholar 

  8. Zhang N, Suleiman JS, He M, Hu B (2008) Chromium(III)-imprinted silica gel for speciation analysis of chromium in environmental water samples with ICP-MS detection. Talanta 75:536

    Article  CAS  Google Scholar 

  9. Yalçın S, Apak R (2004) Chromium(III, VI) speciation analysis with preconcentration on a maleic acid-functionalized XAD sorbent. Anal Chim Acta 505:25–35

    Article  Google Scholar 

  10. Kiran K, Suresh Kumar K, Prasad B, Suvardhan K, Lekkala RB, Janardhanam K (2008) Speciation determination of chromium(III) and (VI) using preconcentration cloud point extraction with flame atomic absorption spectrometry (FAAS). J Hazard Mater 150(3):582–586

    Article  CAS  Google Scholar 

  11. Shaffer RE, Cross JO, Rose-Pehrsson SL, Elam WT (2001) Speciation of chromium in simulated soil samples using X-ray absorption spectroscopy and multivariate calibration. Anal Chim Acta 442(2):295–304

    Article  CAS  Google Scholar 

  12. Chai ZF, Zhang ZY, Feng WY, Chen CY, Xu DD, Hou XL (2004) Study of chemical speciation of trace elements by molecular activation analysis and other nuclear techniques. J Anal At Spectrom 19:26–33

    Article  CAS  Google Scholar 

  13. GuptaVK RA, Nayaka A (2010) Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material. J Colloid Interface Sci 342:135–141

    Article  Google Scholar 

  14. Richtera L, Nguyen HV, Hynek D, Kudra J, Adam V (2016) Electrochemical speciation analysis for simultaneous determination of Cr(III) and Cr(VI) using an activated glassy carbon electrode. Analyst 141:5577

    Article  CAS  Google Scholar 

  15. Yang WP, Zhang ZJ, Deng W (2003) Speciation of chromium by in-capillary reaction and capillary electrophoresis with chemiluminescence detection. J Chrom A 1014:203–214

    Article  CAS  Google Scholar 

  16. Kormalı Ertürün HE, Yılmaz M, Kılıç E (2007) Construction of an anion-selective electrode: dichromate-selective electrode. Sensor Actuat B-Chem 127(2):497–504

    Article  Google Scholar 

  17. Choi YW, Moon SH (2004) Determination of Cr(VI) using an ion selective electrode with SLMs containing Aliquat336. Environ Monit Assess 92:163–178

    Article  CAS  Google Scholar 

  18. Ganjali MR, Rafiei-Sarmazdeh Z, Poursaberi T, Shahtaheri SJ, Norouzi P (2012) Dichromate ion-selective sensor based on functionalized SBA-15/ ionic liquid/MWCNTs/graphite. Int J Electrochem Sci 7:1908–1916

    CAS  Google Scholar 

  19. Hashemi S, Nezamzadeh-Ejhieh A (2016) A novel chromium selective electrode based on surfactant-modified Iranian clinoptilolite nanoparticles. Desalin Water Treat 57(7):3304–3314

    Article  CAS  Google Scholar 

  20. Gupta VK, Jain AK, Kumar P, Agarwal S, Maheshwari G (2006) Chromium(III)-selective sensor based on trio-thymotide in PVC matrix. Sens Actuators, B: Chem 113:182–186

    Article  CAS  Google Scholar 

  21. Singh AK, Gupta VK, Gupta B (2007) Chromium(III) selective membrane sensors based on Schiff bases as chelating ionophores. Anal Chim Acta 585:171–178

    Article  CAS  Google Scholar 

  22. Lin X, Ni Y, Kokot S (2012) Voltammetric analysis with the use of a novel electro-polymerised graphene-nafion film modified glassy carbon electrode: simultaneous analysis of noxious nitroaniline isomers. J Hazard Mater 243:232–241

    Article  CAS  Google Scholar 

  23. Gutsche CD, Dhawan B, No KH, Muthukrishnan RJ (1981) Calixarenes. 4. The synthesis, characterization, and properties of the calixarenes from p-tert-butylphenol. J Am Chem Soc 103:3782–3792

    Article  CAS  Google Scholar 

  24. Gutsche CD, Iqbal M (1990) p-tert-butylcalix[4]arene. Org Synth 68:234–237

    Article  CAS  Google Scholar 

  25. Özkınalı S, Kocaokutgen H (2013) Synthesis, spectral characterisation and thermal behaviours of some new p-tert-butylcalix [4] arene and calix [4] arene-esters containing acryloyl groups. J Mol Struct 1031:70–78

    Article  Google Scholar 

  26. Dalkiran B, Demirel Özel A, Parlayan S, Canel E, Ocak Ü, Kılıç E (2010) A novel lariat crown compound as ionophore for construction of a mercury(II)-selective electrode. Monatsh Chem 141(8):829–839

  27. Schaller U, Bakker E, Spichiger E, Pretsch E (1994) Ionic additives for ion-selective electrically charged carriers. Anal Chem 66(3):391–398

    Article  CAS  Google Scholar 

  28. Zolotov YA (1997) Macrocyclic Compounds in Analytical Chemistry. Vol. 143, Wiley, New York

  29. Shamsipur M, Soleymanpour A, Akhond M, Sharghi H, Hasaninejad AR (2003) Perchlorate selective membrane electrodes based on a phosphorus(V) tetraphenylporphyrin complex. Sensor Actuat B-Chem 89:9–14

    Article  CAS  Google Scholar 

  30. Shahrokhian S, Hamzehloei A, Bagherzadeh M (2002) Chromium(III) porphyrin as a selective ionophore in a salicylate-selective membrane electrode. Anal Chem 74(14):3312–3320

  31. Amemiya S, Bühlmann P, Umezawa Y (1998) A phase boundary potential model for apparently “Twice-Nernstian” responses of liquid membrane ion-selective electrodes. Anal Chem 70:445–454

    Article  CAS  Google Scholar 

  32. Eugster R, Gehrig PM, Morf WE, Spichiger UE, Simon W (1991) Selectivity-modifying influence of anionic sites in neutral-carrier-based membrane electrodes. Anal Chem 63:2285–2289

  33. Kormalı Ertürün HE, Demirel Özel A, Sayın S, Yılmaz M, Kılıç E (2015) Development of a pH sensing membrane electrode based on a new calix[4]arene derivative. Talanta 132:669–675

  34. Shen-Yang T, Ke-An L (1986) The distribution of chromium(VI) species in solution as a function of pH and concentration. Talanta 33(9):775–777

    Article  CAS  Google Scholar 

  35. Demirel A, Doğan A, Canel E, Memon S, Yılmaz M, Kılıc E (2004) Hydrogen ion-selective poly(vinyl chloride) membrane electrode based on a p-tert-butylcalix[4]arene-oxacrown-4. Talanta 62:123–129

  36. Kuruoglu D, Canel E, Memon S, Yılmaz M, Kılıc E (2003) Hydrogen ion-selective poly(vinyl chloride) membrane electrode based on a calix[4]arene. Anal Sci 19(2):217–221

    Article  CAS  Google Scholar 

  37. Rezayi M, Ghasemi M, Karazhian R, Sookhakian M, Alias Y (2014) Potentiometric Chromate Anion Detection Based on Co(SALEN)2 Ionophore in a PVC-Membrane Sensor. J The Electrochem Soc 161(6):129–136

  38. Choi YW, Minoura N, Moon SH (2005) Potentiometric Cr (VI) selective electrode based on novel ionophore-immobilized PVC membranes. Talanta 66:1254–1263

    Article  CAS  Google Scholar 

  39. Choi YW, Moon SH (2001) A study on hexachromic ion selective electrode based on supported liquid membranes. Environ Monit Assess 70:167–180

    Article  CAS  Google Scholar 

  40. Nezamzadeh-Ejhieh A, Shahanshahi M (2013) Modification of clinoptilolite nano-particles with hexadecylpyridynium bromide surfactant as an active component of Cr(VI) selective electrode. J Ind Eng Chem 19:2026–2033

  41. Ardakani MM, Sadeghi A, Salavati-Niasari M (2008) Potentiometric chromate quantification based on interaction with N, N′ Butylen Bis (SalicilidenIminato) Copper (II). Scientia Iranica 15(4):4446–451 

  42. Benvidi A, Elahizadeh M, Zare HR, Vafazadeh R (2011) Highly sensitive membrane electrode based on a Copper(II)- Bis(N-4-Methylphenylsalicyldenaminato) complex for the determination of chromate. Anal Lett 44:595–606

    Article  CAS  Google Scholar 

  43. Ping J, Wang Y, Wu J, Ying Y, Ji F (2012) A novel pH sensing membrane based on an ionic liquid-polymer composite. Microchim Acta 176:229–234

  44.  Crespo GA, Gugsa D, Macho S, Rius FX (2009) Solid-contact pH-selective electrode using multi-walled carbon nanotubes. Anal Bioanal Chem 395:2371–2376

  45. Ayanoğlu MN, Kormalı Ertürün HE, Demirel Özel A, Şahin Ö, Yılmaz M, Kılıç E (2015) Salicylate ion-selective electrode based on a calix[4]arene as ionophore. Electroanal 27(7):1676–1684

  46. Buck RP, Lindner E (1995) Recommendations for nomenclature of ionselective electrodes (IUPAC Recommendations 1994). Pure Appl Chem 66:2527-2536

  47. Antonisse MMG, Snellink-Ruel BHM,. Engbersen JFJ, Reinhoudt DN (1998) Chemically modified field effect transistors with nitrite or fluoride selectivity. J Chem Soc Perkin Trans 2:773-778

Download references

Acknowledgement

Ankara University Research Fund (Project no. 10B4240003) for financial support is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Elif Kormalı Ertürün.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dalkıran, B., Kormalı Ertürün, H., Özel, A.D. et al. Chromate-selective electrodes prepared by using calix[4]arenes for the speciation of Cr(VI) and Cr(III). Ionics 23, 2509–2519 (2017). https://doi.org/10.1007/s11581-017-2080-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-017-2080-3

Keywords

Navigation