Skip to main content

Advertisement

Log in

Polymer electrolytes for lithium ion batteries: a critical study

  • Review
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Polymer electrolytes (PEs) are an essential component being used in most energy storage/conversion devices. The present review article on a brief history, advantage, and their brief application of polymer electrolyte systems. It consists of a glimpse on liquid, gel, and solid polymer electrolyte and a contrast comparison concerning benefits/disadvantages among the three. The article started with a brief introduction of polymer electrolytes followed by their varieties and extreme uses. The role of host polymer matrix by taking numerous examples of polymer electrolyte published by the different renowned group of the concerned field has been explored. The criteria for selection of appropriate host polymer, salt, inorganic filler/clay, and aprotic solvents to be used in polymer electrolyte have been discussed in detail. The mostly used polymer, salt, solvents, and inorganic filler/clay list has been prepared in order to keep the data bank at one place for new researchers. This article comprises different methodologies for the preparation of polymer electrolyte films. The different self-proposed mechanisms (like VTF, WLF, free volume theory, dispersed/intercalated mechanisms, etc.) have been discussed in order to explain the lithium ion conduction in polymer electrolyte systems. A numerous characterization techniques and their resulting analysis have been summarized from the different published reports at one place for better awareness of the scientific community/reader of the area.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25
Fig. 26
Fig. 27
Fig. 28
Fig. 29
Fig. 30
Fig. 31
Fig. 32
Fig. 33
Fig. 34
Fig. 35
Fig. 36
Fig. 37

Similar content being viewed by others

Abbreviations

AFM:

Atomic force microscope

AgNO3 :

Silver nitrate

Al2O3 :

Aluminium oxide

AlCl4 :

Tetrachloroaluminate

ALE:

Aqueous liquid electrolyte

BaTiO3 :

Barium titnate

ACN:

Acetonitrile

CNT:

Carbon nanotube

CPE:

Composite polymer electrolyte

DEC:

Diethyl carbonate

DMC:

Dimethyl carbonate

DMF:

Dimethyl formamide

DMSO:

Dimethyl sulfoxide

DN:

Donor number

DSC:

Differential scanning calorimetry

EC:

Ethylene carbonate

EDX:

Energy-dispersive X-ray spectroscopy

ESW:

Electrochemical stability window

FESEM:

Field emission scanning electron microscope

FTIR:

Fourier transform infrared spectroscopy

GPEs:

Gel polymer electrolytes

IL:

Ionic liquid

LIB:

Lithium ion battery

LiBETI:

Lithium-bisperfluoroethylsulfonyl imide

LiBF4 :

Lithium tetrafluoroborate

LiBOB:

Lithium bis(oxalato)borate

LiCF3SO3 :

Lithium trifluoromethanesulfonate

LiClO4 :

Lithium perchlorate

LiCoO2 :

Lithium cobalte oxide

LiDFOB:

Llithium difluoro(oxalate)borate

LiFePO4 :

Lithium iron phosphate

LiPF6 :

Lithium hexafluorophosphate

LiTFSI:

Lithium bis-trifluoromethanesulfonimide

LLTO:

Lithium lanthanum titanate

LPEs:

Liquid polymer electrolytes

Mg(NO3)2 :

Mmagnesium nitrate

MMT:

Montmorillonite

NaClO4 :

Sodium perchlorate

NALE:

Non-aqueous liquid electrolyte

NaPF6 :

Sodium hexafluorophosphate

NaPO3 :

Sodium hexametaphosphate

NM:

Nitromethane

NMP:

N-methyl-2-pyrrolidone

NMR:

Nuclear magnetic resonance

P(AN-co-MMA):

Poly(acrylonitrile-co-methyl methacrylate)

PAN:

Poly(acrylonitrile)

PC:

Propylene carbonate

PCL:

Poly(ε-caprolactone)

PDMS:

Polydimethylsiloxane

PEG:

Polyethylene glycol

PEGDMA:

Poly(ethylene glycol dimethacrylate)

PEMA:

Poly(ethyl methacrylate)

PEO:

Poly(ethylene) oxide

PEs:

Polymer electrolytes

PMMA:

Poly(methyl methacrylate)

PNC:

Polymer nanocomposite

PPO:

Poly(propylene oxide)

PS:

Polystyrene

PVA:

Poly(vinyl alcohol)

PVB:

Polyvinyl butyral

PVC:

Poly(vinyl chloride)

PVdF:

Poly(vinylidenedifluoride)

PVdF-HFP:

Poly(vinylidenedifluoridehexafluoropropylene)

SAED:

Surface area electron diffraction pattern

SiO2 :

Silicon oxide

SnO2 :

Tin dioxide

SPEs:

Solid polymer electrolytes

Sr2O3 :

Strontium oxide

TEM:

Transmission electron microscopy

T g :

Glass transition temperature

TGA:

Thermogravimetric analysis

THF:

Tetrahydrofuran

TiO2 :

Titanum oxide

VTF:

Vogel–Tamman–Fulcher

WLF:

Williams–Landel–Ferry

XRD:

X-ray diffraction

ZrO2 :

Zirconium oxide

References

  1. Armand M (1983) Polymer solid electrolytes—an overview. Solid State Ionics 9:745–754

    Article  Google Scholar 

  2. Armand M (1986) Polymer electrolytes. Ann Rev Mater Res 43:503–525

    Google Scholar 

  3. Wright PV (1998) Polymer electrolytes—the early days. Electrochim Acta 43(10):1137–1143

    Article  CAS  Google Scholar 

  4. Meyer WH (1998) Polymer electrolytes for lithium-ion batteries. Adv Mater 10(6):439–448

    Article  CAS  Google Scholar 

  5. Armand M, Tarascon JM (2008) Building better batteries. Nature 451(7179):652–657

    Article  CAS  Google Scholar 

  6. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41(22):223001

    Article  CAS  Google Scholar 

  7. Dunn B, Kamath H, Tarascon JM (2011) Electrical energy storage for the grid: a battery of choices. Science 334(6058):928–935

    Article  CAS  Google Scholar 

  8. Sequeira C, Santos D (Eds.) (2010) Polymer electrolytes: fundamentals and applications. Elsevier.

  9. Armand M (1994) The history of polymer electrolytes. Solid State Ionics 69(3–4):309–319

    Article  CAS  Google Scholar 

  10. Armand MB, Bruce PG, Forsyth M, Scrosati B, Wieczorek W (2011) Polymer electrolytes. Energy Materials, 1–31.

  11. Fenton DE, Parker JM, Wright PV (1973) Complexes of alkali metal ions with poly (ethylene oxide). Polymer 14:589–591

    Article  CAS  Google Scholar 

  12. Papke BL, Ratner MA, Shriver DF (1982) Conformation and ion-transport models for the structure and ionic conductivity in complexes of Polyethers with alkali metal salts. J Electrochem Soc 129(8):1694–1701

    Article  CAS  Google Scholar 

  13. Sharma AL, Thakur AK (2010) Polymer–ion–clay interaction based model for ion conduction in intercalation-type polymer nanocomposite. Ionics 16(4):339–350

    Article  CAS  Google Scholar 

  14. Takahashi T (1989) High conductivity solid ionic conductors: recent trends and applications. World Scientific.

  15. Armand M (1990) Polymers with ionic conductivity. Adv Mater 2(6–7):278–286

    Article  CAS  Google Scholar 

  16. Berthier C, Gorecki W, Minier M, Armand MB, Chabagno JM, Rigaud P (1983) Microscopic investigation of ionic conductivity in alkali metal salts-poly (ethylene oxide) adducts. Solid State Ionics 11(1):91–95

    Article  CAS  Google Scholar 

  17. Muldoon J, Bucur CB, Boaretto N, Gregory T, Di Noto V (2015) Polymers: opening doors to future batteries. Polym Rev 55(2):208–246

    Article  CAS  Google Scholar 

  18. Marcinek M, Syzdek J, Marczewski M, Piszcz M, Niedzicki L, Kalita M et al (2015) Electrolytes for Li-ion transport–review. Solid State Ionics 276:107–126

    Article  CAS  Google Scholar 

  19. Choi NS, Lee YS, Park JK, Ko JM (2001) New polymer electrolytes based on PVC/PMMA blend for plastic lithium-ion batteries. Electrochim Acta 46:1453–1459

    Article  CAS  Google Scholar 

  20. Choe HS, Carroll BG, Pasquariello DM, Abraham KM (1997) Characterization of some polyacrylonitrile-based electrolytes. Chem Mater 9(1):369–379

    Article  CAS  Google Scholar 

  21. Vachon C, Labreche C, Vallee A, Besner S, Dumont M, Prud’Homme J (1995) Microphase separation and conductivity behavior of poly (propylene oxide)-lithium salt electrolytes. Macromolecules 28(16):5585–5594

    Article  CAS  Google Scholar 

  22. Rhoo HJ, Kim HT, Park JK, Hwang TS (1997) Ionic conduction in plasticized PVC-PMMA blend polymer electrolytes. Electrochimica Acta 42(10):1571–1579

    Article  CAS  Google Scholar 

  23. Lee HS, Yang XQ, McBreen J, Xu ZS, Skotheim TA, Okamoto Y (1994) Ionic conductivity of a polymer electrolyte with modified carbonate as a plasticizer for poly (ethylene oxide). J Electrochem Soc 141(4):886–889

    Article  CAS  Google Scholar 

  24. Arya A, Sharma AL (2016) Conductivity and stability properties of solid polymer electrolyte based on PEO-PAN + LiPF6 for energy storage. Appl Sci Lett 2(2):72–75

    Google Scholar 

  25. Cheon SE, Ko KS, Cho JH, Kim SW, Chin EY, Kim HT (2003) Rechargeable lithium sulfur battery. I. Structural change of sulfur cathode during discharge and charge. J Electrochem Soc 150:A796–A799

    Article  CAS  Google Scholar 

  26. Liang X, Wen Z, Liu Y, Wu M, Jin J, Zhang H, Wu X (2011) Improved cycling performances of lithium sulfur batteries with LiNO3-modified electrolyte. J Power Sources 196:9839–9843

    Article  CAS  Google Scholar 

  27. Choi JW, Kim JK, Cheruvally G, Ahn JH, Kim KW (2007) Rechargeable lithium/sulfur battery with suitable mixed liquid electrolytes. Electrochim Acta 52:2075

    Article  CAS  Google Scholar 

  28. Chang DR, Lee SH, Kim SW, Kim HT (2002) Binary electrolyte based on tetra(ethylene glycol) dimethyl ether and 1,3-dioxolane for lithium-sulfur battery. J Power Sources 112:452–460

    Article  CAS  Google Scholar 

  29. Kim S, Jung Y, Park SJ (2005) Effects of imidazolium salts on discharge performance of rechargeable lithium-sulfur cells containing organic solvent electrolytes. J Power Sources 152:272–277

    Article  CAS  Google Scholar 

  30. Choi JW, Cheruvally G, Kim DS, Ahn JH, Kim KW, Ahn HJ (2008) Rechargeable lithium/sulfur battery with liquid electrolytes containing toluene as additive. J Power Sources 183:441–445

    Article  CAS  Google Scholar 

  31. Song JY, Wang YY, Wan CC (1999) Review of gel-type polymer electrolytes for lithium-ion batteries. J Power Sources 77:183–197

    Article  CAS  Google Scholar 

  32. Earle MJ, Esperança JM, Gilea MA, Lopes JN, Rebelo LP, Magee JW, Seddon KR, Widegren JA (2006) The distillation and volatility of ionic liquids. Nature 439(7078):831–834

    Article  CAS  Google Scholar 

  33. Gebbie MA, Valtiner M, Banquy X, Fox ET, Henderson WA, Israelachvili JN (2013) Ionic liquids behave as dilute electrolyte solutions. Proc Natl Acad Sci 110(24):9674–9679

    Article  CAS  Google Scholar 

  34. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B (2009) Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater 8(8):621–629

    Article  CAS  Google Scholar 

  35. Prasanth R, Shubha N, Hng HH, Srinivasan M (2014) Effect of poly (ethylene oxide) on ionic conductivity and electrochemical properties of poly (vinylidenefluoride) based polymer gel electrolytes prepared by electrospinning for lithium ion batteries. J Power Sources 245:283–291

    Article  CAS  Google Scholar 

  36. Chaurasia SK, Singh RK, Chandra S (2013) Thermal stability, complexing behavior, and ionic transport of polymeric gel membranes based on polymer PVdF-HFP and ionic liquid,[BMIM][BF4]. J Phys Chem B 117(3):897–906

    Article  CAS  Google Scholar 

  37. Saroj AL, Singh RK (2012) Thermal, dielectric and conductivity studies on PVA/ionic liquid [EMIM][EtSO 4] based polymer electrolytes. J Phys Chem Solids 73(2):162–168

    Article  CAS  Google Scholar 

  38. Nath AK, Kumar A (2014) Scaling of AC conductivity, electrochemical and thermal properties of ionic liquid based polymer nanocomposite electrolytes. Electrochimica Acta 129:177–186

    Article  CAS  Google Scholar 

  39. Choi JW, Cheruvally G, Kim YH, Kim JK, Manuel J, Raghavan P, Ahn JH, Kim KW, Ahn HJ, Choi DS, Song CE (2007) Poly (ethylene oxide)-based polymer electrolyte incorporating room-temperature ionic liquid for lithium batteries. Solid State Ionics 178(19):1235–1241

    Article  CAS  Google Scholar 

  40. Anuar NK, Subban RH, Mohamed NS (2012) Properties of PEMA-NH4CF3SO3 added to BMATSFI ionic liquid. Materials 5(12):2609–2620

    Article  CAS  Google Scholar 

  41. Kumar Y, Hashmi SA, Pandey GP (2011) Lithium ion transport and ion–polymer interaction in PEO based polymer electrolyte plasticized with ionic liquid. Solid State Ionics 201(1):73–80

    Article  CAS  Google Scholar 

  42. Liew CW, Ramesh S, Arof AK (2014) Good prospect of ionic liquid based-poly (vinyl alcohol) polymer electrolytes for supercapacitors with excellent electrical, electrochemical and thermal properties. Int J Hydrog Energy 39(6):2953–2963

    Article  CAS  Google Scholar 

  43. Zhang X, Wang L, Peng J, Cao P, Cai X, Li J, Zhai M (2015) A flexible ionic liquid gelled PVA-Li2SO4 polymer electrolyte for semi-solid-state supercapacitors. Adv Mater Interfaces 2(15)

  44. Zhu C, Cheng H, Yang Y (2008) Electrochemical characterization of two types of PEO-based polymer electrolytes with room-temperature ionic liquids. J Electrochem Soc 155(8):A569–A575

    Article  CAS  Google Scholar 

  45. Chaurasia SK, Singh RK, Chandra S (2011) Structural and transport studies on polymeric membranes of PEO containing ionic liquid, EMIM-TY: evidence of complexation. Solid State Ionics 183(1):32–39

    Article  CAS  Google Scholar 

  46. Chaurasia SK, Singh RK, Chandra S (2011) Dielectric relaxation and conductivity studies on (PEO:LiClO4) polymer electrolyte with added ionic liquid [BMIM][PF6]: evidence of ion–ion interaction. J Polym Sci B Polym Phys 49(4):291–300

    Article  CAS  Google Scholar 

  47. Chaurasia SK, Singh RK (2010) Electrical conductivity studies on composite polymer electrolyte based on ionic liquid. Phase Transit 83(6):457–466

    Article  CAS  Google Scholar 

  48. Kim GT, Appetecchi GB, Alessandrini F, Passerini S (2007) Solvent-free, PYR 1A TFSI ionic liquid-based ternary polymer electrolyte systems: I. Electrochemical characterization. J Power Sources 171(2):861–869

    Article  CAS  Google Scholar 

  49. Hellio D, Djabourov M (2006) Physically and chemically crosslinked gelatin gels. In Macromolecular Symposia 241(1):23–27

    Article  CAS  Google Scholar 

  50. Yang YQ, Chang Z, Li MX, Wang XW, Wu Y (2015) A sodium ion conducting gel polymer electrolyte. Solid State Ionics 269:1–7

    Article  CAS  Google Scholar 

  51. Wang SH, Hou SS, Kuo PL, Teng H (2013) Poly (ethylene oxide)-co-poly (propylene oxide)-based gel electrolyte with high ionic conductivity and mechanical integrity for lithium-ion batteries. ACS Appl Mater Interfaces 5(17):8477–8485

    Article  CAS  Google Scholar 

  52. Liao YH, Zhou DY, Rao MM, Li WS, Cai ZP, Liang Y, Tan CL (2009) Self-supported poly (methyl methacrylate–acrylonitrile–vinyl acetate)-based gel electrolyte for lithium ion battery. J Power Sources 189(1):139–144

    Article  CAS  Google Scholar 

  53. Kumar GG, Sampath S (2005) Electrochemical and spectroscopic investigations of a gel polymer electrolyte of poly (methylmethacrylate) and zinc triflate. Solid State Ionics 176(7):773–780

    Article  CAS  Google Scholar 

  54. Periasamy P, Tatsumi K, Shikano M, Fujieda T, Saito Y, Sakai T, Mizuhata M, Kajinami A, Deki S (2000) Studies on PVdF-based gel polymer electrolytes. J Power Sources 88(2):269–273

    Article  CAS  Google Scholar 

  55. Quartarone E, Tomasi C, Mustarelli P, Appetecchi GB, Croce F (1998) Long-term structural stability of PMMA-based gel polymer electrolytes. Electrochimica Acta 43(10):1435–1439

    Article  CAS  Google Scholar 

  56. Saito Y, Capiglia C, Kataoka H, Yamamoto H, Ishikawa H, Mustarelli P (2000) Conduction properties of PVDF-type polymer electrolytes with lithium salts, LiN (CF3SO2)2 and LiN(C2F5SO2)2. Solid State Ionics 136:1161–1166

    Article  Google Scholar 

  57. Choe HS, Giaccai J, Alamgir M, Abraham KM (1995) Preparation and characterization of poly (vinyl sulfone)-and poly (vinylidene fluoride)-based electrolytes. Electrochimica Acta 40(13):2289–2293

    Article  CAS  Google Scholar 

  58. Zhang H, Ma X, Lin C, Zhu B (2014) Gel polymer electrolyte-based on PVDF/fluorinated amphiphilic copolymer blends for high performance lithium-ion batteries. RSC Adv 4(64):33713–33719

    Article  CAS  Google Scholar 

  59. Zhu Y, Xiao S, Shi Y, Yang Y, Hou Y, Wu Y (2014) A composite gel polymer electrolyte with high performance based on poly (vinylidene fluoride) and polyborate for lithium ion batteries. Adv Energy Mater 4(1):1300647

    Article  CAS  Google Scholar 

  60. Zhang Y, Rohan R, Sun Y, Cai W, Xu G, Lin A, Cheng H (2014) A gel single ion polymer electrolyte membrane for lithium-ion batteries with wide-temperature range operability. RSC Adv 4(40):21163–21170

    Article  CAS  Google Scholar 

  61. Rao M, Geng X, Liao Y, Hu S, Li W (2012) Preparation and performance of gel polymer electrolyte based on electrospun polymer membrane and ionic liquid for lithium ion battery. J Membr Sci 399:37–42

    Article  CAS  Google Scholar 

  62. Wang X, Liu Z, Kong Q, Jiang W, Yao J, Zhang C, Cui G (2014) A single-ion gel polymer electrolyte based on polymeric lithium tartaric acid borate and its superior battery performance. Solid State Ionics 262:747–753

    Article  CAS  Google Scholar 

  63. Hu P, Zhao J, Wang T, Shang C, Zhang J, Qin B, Liu Z, Xiong J, Cui G (2015) A composite gel polymer electrolyte with high voltage cyclability for Ni-rich cathode of lithium-ion battery. Electrochem Commun 61:32–35

    Article  CAS  Google Scholar 

  64. Deng F, Wang X, He D, Hu J, Gong C, Ye YS, Xie X, Xue Z (2015) Microporous polymer electrolyte based on PVdF/PEO star polymer blends for lithium ion batteries. J Membr Sci 491:82–89

    Article  CAS  Google Scholar 

  65. Kim DW (2000) Electrochemical characterization of poly (ethylene-co-methyl acrylate)-based gel polymer electrolytes for lithium-ion polymer batteries. J Power Sources 87(1):78–83

    Article  CAS  Google Scholar 

  66. Sivakumar M, Subadevi R, Rajendran S, Wu HC, Wu NL (2007) Compositional effect of PVdF–PEMA blend gel polymer electrolytes for lithium polymer batteries. Eur Polym J 43(10):4466–4473

    Article  CAS  Google Scholar 

  67. Agrawal SL, Awadhia A (2004) DSC and conductivity studies on PVA based proton conducting gel electrolytes. Bull Mater Sci 27(6):523–527

    Article  CAS  Google Scholar 

  68. Ma X, Huang X, Gao J, Zhang S, Deng Z, Suo J (2014) Compliant gel polymer electrolyte based on poly (methyl acrylate-co-acrylonitrile)/poly (vinyl alcohol) for flexible lithium-ion batteries. Electrochimica Acta 115:216–222

    Article  CAS  Google Scholar 

  69. Lian F, Wen Y, Ren Y, Guan H (2014) A novel PVB based polymer membrane and its application in gel polymer electrolytes for lithium-ion batteries. J Membr Sci 456:42–48

    Article  CAS  Google Scholar 

  70. Xiao W, Li X, Wang Z, Guo H, Li Y, Yang B (2012) Performance of PVDF-HFP-based gel polymer electrolytes with different pore forming agents. Iran Polym J 21(11):755–761

    Article  CAS  Google Scholar 

  71. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42(1):21–42

    Article  CAS  Google Scholar 

  72. Zhang HP, Zhang P, Li ZH, Sun M, Wu YP, Wu HQ (2007) A novel sandwiched membrane as polymer electrolyte for lithium ion battery. Electrochem Commun 9(7):1700–1703

    Article  CAS  Google Scholar 

  73. Arya A, Sharma AL, Sharma S, Sadiq M (2016) Role of low salt concentration on electrical conductivity in blend polymeric films. J Integr Sci Technol 4(1):17–20

    Google Scholar 

  74. Jeddi K, Qazvini NT, Jafari SH, Khonakdar HA (2010) Enhanced ionic conductivity in PEO/PMMA glassy miscible blends: role of nano-confinement of minority component chains. J Polym Sci B Polym Phys 48:2065–2071

    Article  CAS  Google Scholar 

  75. Polu AR, Kumar R (2013) Preparation and characterization of pva based solid polymer electrolytes for electrochemical cell applications. Chin J Polym Sci 31(4):641–648

    Article  CAS  Google Scholar 

  76. Chen-Yang YW, Chen YT, Chen HC, Lin WT, Tsai CH (2009) Effect of the addition of hydrophobic clay on the electrochemical property of polyacrylonitrile/LiClO4 polymer electrolytes for lithium battery. Polymer 50(13):2856–2862

    Article  CAS  Google Scholar 

  77. Han HS, Kang HR, Kim SW, Kim HT (2002) Phase-separated polymer electrolyte based on poly (vinyl chloride)/poly (ethyl methacrylate) blend. J Power Sources 112(2):461–468

    Article  CAS  Google Scholar 

  78. Mejía A, Devaraj S, Guzmán J, del Amo JM, García N, Rojo T, Armand M, Tiemblo P (2016) Scalable plasticized polymer electrolytes reinforced with surface-modified sepiolite fillers–a feasibility study in lithium metal polymer batteries. J Power Sources 306:772–778

    Article  CAS  Google Scholar 

  79. Liang B, Jiang Q, Tang S, Li S, Chen X (2016) Porous polymer electrolytes with high ionic conductivity and good mechanical property for rechargeable batteries. J Power Sources 307:320–328

    Article  CAS  Google Scholar 

  80. Rajendran S, Sivakumar M, Subadevi R, Nirmala M (2004) Characterization of PVA–PVdF based solid polymer blend electrolytes. Phys B Condens Matter 348(1):73–78

    Article  CAS  Google Scholar 

  81. Liang B, Tang S, Jiang Q, Chen C, Chen X, Li S, Yan X (2015) Preparation and characterization of PEO-PMMA polymer composite electrolytes doped with nano-Al2O3. Electrochimica Acta 169:334–341

    Article  CAS  Google Scholar 

  82. Ma Y, Li LB, Gao GX, Yang XY, You Y (2016) Effect of montmorillonite on the ionic conductivity and electrochemical properties of a composite solid polymer electrolyte based on polyvinylidenedifluoride/polyvinyl alcohol matrix for lithium ion batteries. Electrochimica Acta 187:535–542

    Article  CAS  Google Scholar 

  83. Sharma AL, Thakur AK (2013) Plastic separators with improved properties for portable power device applications. Ionics 19(5):795–809

    Article  CAS  Google Scholar 

  84. Sharma AL, Thakur AK (2010) Improvement in voltage, thermal, mechanical stability and ion transport properties in polymer-clay nanocomposites. J Appl Polym Sci 118(5):2743–2753

    Article  CAS  Google Scholar 

  85. Lin D, Liu W, Liu Y, Lee HR, Hsu PC, Liu K, Cui Y (2015) High ionic conductivity of composite solid polymer electrolyte via in situ synthesis of monodispersed SiO2nanospheres in poly (ethylene oxide). Nano Lett 16(1):459–465

    Article  CAS  Google Scholar 

  86. Dam T, Karan NK, Thomas R, Pradhan DK, Katiyar RS (2015) Observation of ionic transport and ion-coordinated segmental motions in composite (polymer-salt-clay) solid polymer electrolyte. Ionics 21(2):401–410

    Article  CAS  Google Scholar 

  87. Klongkan S, Pumchusak J (2015) Effects of nano alumina and plasticizers on morphology, ionic conductivity, thermal and mechanical properties of PEO-LiCF3SO3 solid polymer electrolyte. Electrochimica Acta 161:171–176

    Article  CAS  Google Scholar 

  88. Amaral FA, Sousa RM, Morais LC, Rocha RG, Campos IO, Fagundes WS, Fonseca CN, Canobre SC (2015) Preparation and characterization of the porous solid polymer electrolyte of PAN/PVA by phase inversion. J Appl Electrochem 45(8):809–820

    Article  CAS  Google Scholar 

  89. Tamilselvi P, Hema M (2016) Structural, thermal, vibrational, and electrochemical behavior of lithium ion conducting solid polymer electrolyte based on poly (vinyl alcohol)/poly (vinylidene fluoride) blend. Polymer Sci Ser A 1–9

  90. Zhang H, Liu C, Zheng L, Xu F, Feng W, Li H et al (2014) Lithium bis (fluorosulfonyl) imide/poly (ethylene oxide) polymer electrolyte. Electrochimica Acta 133:529–538

    Article  CAS  Google Scholar 

  91. Karthik S, Suresh J, Vakees E, Kayalvizhi M, Thangaraj V, Balaji K, Selvasekarapandian S, Arun A (2016) Polyvinyl alcohol based solid electrolyte film: synthesis, characterization and electrical properties. In Macromol Symposia 362:18–25

    Article  CAS  Google Scholar 

  92. Rajendran S, Prabhu MR, Rani MU (2008) Characterization of PVC/PEMA based polymer blend electrolytes. Int J Electrochem Sci 3(3):282–290

    CAS  Google Scholar 

  93. Ramya CS, Savitha T, Selvasekarapandian S, Hirankumar G (2005) Transport mechanism of Cu-ion conducting PVA based solid-polymer electrolyte. Ionics 11(5–6):436–441

    Article  CAS  Google Scholar 

  94. Kuo CW, Li WB, Chen PR, Liao JW, Tseng CG, Wu TY (2013) Effect of plasticizer and lithium salt concentration in PMMA-based composite polymer electrolytes. Int J Electrochem Sci 8:5007–5021

    CAS  Google Scholar 

  95. Li Y, Wang J, Tang J, Liu Y, He Y (2009) Conductive performances of solid polymer electrolyte films based on PVB/LiClO4 plasticized by PEG 200, PEG 400 and PEG 600. J Power Sources 187(2):305–311

    Article  CAS  Google Scholar 

  96. Liu L, Wang Z, Zhao Z, Zhao Y, Li F, Yang L (2016) PVDF/PAN/SiO2 polymer electrolyte membrane prepared by combination of phase inversion and chemical reaction method for lithium ion batteries. J Solid State Electrochem 20(3):699–712

    Article  CAS  Google Scholar 

  97. Bruce PG (1995) Structure and electrochemistry of polymer electrolytes. Electrochimica Acta 40:2077–2085

    Article  CAS  Google Scholar 

  98. Kelley IE, Owen JR, Steele BC (1985) Ionic conductivity of electrolytes formed from PEO-LiCF3SO3 complexes with low molecular weight poly ethylene glycol. J Power Sources 14:13

    Article  Google Scholar 

  99. Fauteaux D, PrudNommi J, Hardey PE (1988) Electrochemical stability and ionic conductivity of some polymer-LiX based electrolytes. Solid State Ionics 28:923–928

    Article  Google Scholar 

  100. Ito Y, Kanehori K, Miyauchi K, Kodu T (1987) Ionic conductivity of electrolytes formed from PEO-LiCF3SO3 complex with low molecular weight poly(ethylene glycol). J Mater Sci 22(5):1845–1849

    Article  CAS  Google Scholar 

  101. Feuillade G, Perche P (1975) Ion-conductive macromolecular gels and membranes for solid lithium cells. J Appl Electrochem 5(1):63–69

    Article  CAS  Google Scholar 

  102. Abraham KM, Alamgir M (1990) Li+-conductive solid polymer electrolyte with liquid-like conductivity. J ElectrochemSoc 137(5):1657–1658

    Article  CAS  Google Scholar 

  103. Croce F, Gerace F, Dautzenberg G, Passerini S, Appectecchi GB, Scrosati B (1994) Synthesis and characterization of highly conducting gel electrolytes. Electrochim Acta 39(14):2187–2194

    Article  CAS  Google Scholar 

  104. Appetecchi GB, Scrosati B (1998) Lithium Ion polymer battery. Electrochim Acta 43:1105

    Article  CAS  Google Scholar 

  105. Appettecchi GB, Croce F, Ramagnoli P, Scrosati B, Heider U, Osten R (1999) High performance of gel-type lithium electrolyte membranes. Electrochem Comm 1(2):83–86

    Article  Google Scholar 

  106. Choi BK, Kim YW, Shin HK (2000) Ionic conduction in PEO–PAN blend polymer electrolytes. Electrochimica Acta 45(8):1371–1374

    Article  CAS  Google Scholar 

  107. Ramesh S, Leen KH, Kumutha K, Arof AK (2007) FTIR studies of PVC/PMMA blend based polymer electrolytes. Spectrochimica Acta Part A: Mol Biomol Spectrosc 66(4):1237–1242

    Article  CAS  Google Scholar 

  108. Lee H, Yoo JK, Park JH, Kim JH, Kang K, Jung YS (2012) A stretchable polymer–carbon nanotube composite electrode for flexible lithium-ion batteries: porosity engineering by controlled phase separation. Adv Energy Mater 2(8):976–982

    Article  CAS  Google Scholar 

  109. Esterly DM (2002) Manufacturing of poly(vinylidene fluoride) and evaluation of its mechanical properties

  110. Tsuchida E, Ohno H, Tsunemi K (1983) Conductivity of lithiumions in PVdF and its derivatives—I. Electrochim Acta 28:59

    Article  Google Scholar 

  111. Tsunemi K, Ohno H, Tsuchida E (1983) A mechanism of ionic conduction of poly (vinylidene fluoride)-lithium perchlorate hybrid films. ElectrochimicaActa 28(6):833–837

    Article  CAS  Google Scholar 

  112. Jiang Z, Carroll B, Abraham KM (1997) Studies of some poly (vinylidene fluoride) electrolytes. Electrochimica Acta 42(17):2667–2677

    Article  CAS  Google Scholar 

  113. Aravindan V, Gnanaraj J, Madhavi S, Liu HK (2011) Lithium-ion conducting electrolyte salts for lithium batteries. Chem–A Eur J 17(51):14326–14346

    Article  CAS  Google Scholar 

  114. Grünebaum M, Hiller MM, Jankowsky S, Jeschke S, Pohl B, Schürmann T, Vettikuzha P, Gentschev AC, Stolina R, Müller R, Wiemhöfer HD (2014) Synthesis and electrochemistry of polymer based electrolytes for lithium batteries. Prog Solid State Chem 42(4):85–105

    Article  CAS  Google Scholar 

  115. Gray FM (1997) Polymer electrolytes. Royal Society of Chemistry.

  116. Sloop SE, Pugh JK, Wang S, Kerr JB, Kinoshita K (2001) Chemical reactivity of PF5 and LiPF6 in ethylene carbonate/dimethyl carbonate solutions. Electrochem Solid-State Lett 4(4):A42–A44

    Article  CAS  Google Scholar 

  117. Barlowz CG (1999) Reaction of water with hexafluorophosphates and with Li bis (perfluoroethylsulfonyl) imide salt. Electrochem Solid-State Lett 2(8):362–364

    Article  Google Scholar 

  118. Shanmukaraj D, Wang GX, Murugan R, Liu H (2008) Ionic conductivity and electrochemical stability of poly (methylmethacrylate)–poly (ethylene oxide) blend-ceramic fillers composites. J Phys Chem Solids 69(1):243–248

    Article  CAS  Google Scholar 

  119. Moskwiak M, Giska I, Borkowska R, Zalewska A, Marczewski M, Marczewska H, Wieczorek W (2006) Physico-and electrochemistry of composite electrolytes based on PEODME–LiTFSI with TiO2. J Power Sources 159(1):443–448

    Article  CAS  Google Scholar 

  120. Itoh T, Miyamura Y, Ichikawa Y, Uno T, Kubo M, Yamamoto O (2003) Composite polymer electrolytes of poly (ethylene oxide)/BaTiO3/Li salt with hyperbranched polymer. J Power Sources 119:403–408

    Article  CAS  Google Scholar 

  121. Park CH, Kim DW, Prakash J, Sun YK (2003) Electrochemical stability and conductivity enhancement of composite polymer electrolytes. Solid State Ionics 159(1):111–119

    Article  CAS  Google Scholar 

  122. Liu Y, Lee JY, Hong L (2003) Morphology, crystallinity, and electrochemical properties of in situ formed poly (ethylene oxide)/TiO2 nanocomposite polymer electrolytes. J Appl Polym Sci 89(10):2815–2822

    Article  CAS  Google Scholar 

  123. Magistris A, Mustarelli P, Quartarone E, Tomasi C (2000) Transport and thermal properties of (PEO)nLiPF6 electrolytes for super-ambient applications. Solid State Ionics 136:1241–1247

    Article  Google Scholar 

  124. Ali TM, Padmanathan N, Selladurai S (2015) Effect of nanofiller CeO2 on structural, conductivity, and dielectric behaviors of plasticized blend nanocomposite polymer electrolyte. Ionics 21(3):829–840

    Article  CAS  Google Scholar 

  125. Nunes-Pereira J, Costa CM, Lanceros-Méndez S (2015) Polymer composites and blends for battery separators: state of the art, challenges and future trends. J Power Sources 281:378–398

    Article  CAS  Google Scholar 

  126. Eiamlamai P (2015). Polymer electrolytes based on ionic liquids for lithium batteries (Doctoral dissertation, Université Grenoble Alpes).

  127. Ponrouch A, Monti D, Boschin A, Steen B, Johansson P, Palacin MR (2015) Non-aqueous electrolytes for sodium-ion batteries. J Mater Chem A 3(1):22–42

    Article  CAS  Google Scholar 

  128. Dudley JT, Wilkinson DP, Thomas G, LeVae R, Woo S, Blom H, Horvath C, Juzkow MW, Denis B, Juric P, Aghakian P (1991) Conductivity of electrolytes for rechargeable lithium batteries. J Power Sources 35(1):59–82

    Article  CAS  Google Scholar 

  129. Tamura T, Yoshida K, Hachida T, Tsuchiya M, Nakamura M, Kazue Y, Tachikawa N, Dokko K, Watanabe M (2010) Physicochemical properties of glyme-Li salt complexes as a new family of room-temperature ionic liquids. Chem Lett 39(7):753–755

    Article  CAS  Google Scholar 

  130. Li T, Balbuena PB (1999) Theoretical studies of lithium perchlorate in ethylene carbonate, propylene carbonate, and their mixtures. J Electrochem Soc 146(10):3613–3622

    Article  CAS  Google Scholar 

  131. Park JK (Ed.) (2012) Principles and applications of lithium secondary batteries. John Wiley & Sons

  132. Karuppasamy K, Antony R, Alwin S, Balakumar S (2014) A Review on PEO based Solid Polymer Electrolytes (SPEs) complexed with Li-X (X = Tf, BOB) for Rechargeable Lithium Ion Batteries. In Materials Science Forum 807

  133. Park CH, Park M, Yoo SI, Joo SK (2006) A spin-coated solid polymer electrolyte for all-solid-state rechargeable thin-film lithium polymer batteries. J Power Sources 158(2):1442–1446

    Article  CAS  Google Scholar 

  134. Norrman K, Ghanbari-Siahkali A, Larsen NB (2005) 6 Studies of spin-coated polymer films. Annual Reports Section" C″(Physical Chemistry) 101:174–201.

  135. Krebs FC (2009) Fabrication and processing of polymer solar cells: a review of printing and coating techniques. Sol Energy Mater Sol Cells 93(4):394–412

    Article  CAS  Google Scholar 

  136. Wilson MS, Gottesfeld S (1992) Thin-film catalyst layers for polymer electrolyte fuel cell electrodes. J Appl Electrochem 22(1):1–7

    Article  CAS  Google Scholar 

  137. Chandra A (2012) Hot-pressed Ag + Ion conducting glass-polymer electrolytes: synthesis and battery application. Portugaliae Electrochimica Acta 30(4):261–266

    Article  CAS  Google Scholar 

  138. Agrawal RC, Chandra A (2007) Ion transport and electrochemical cell performance studies on hot-press-synthesized Ag + ion conducting electroactive polymeric membranes:(1− x) PEO: x [0.7 (0.75 AgI: 0.25 AgCl): 0.3 MI]. J Phys D Appl Phys 40(22):7024

    Article  CAS  Google Scholar 

  139. Mahapatra S (2011) Preparation and Characterization of Polymer Electrolytes (Doctoral dissertation).

  140. Pradhan DK, Choudhary RN, Samantaray BK, Karan NK, Katiyar RS (2007) Effect of plasticizer on structural and electrical properties of polymer nanocompsoite electrolytes. Int J ElectrochemSci 2:861–871

    CAS  Google Scholar 

  141. Wu Y (Ed.) (2015) Lithium-Ion Batteries: Fundamentals and Applications (Vol. 4). CRC Press

  142. Hsu CP, Guo RH, Hua CC, Shih CL, Chen WT, Chang TI (2013) Effect of polymer binders in screen printing technique of silver pastes. J Polym Res 20(10):1–8

    Article  CAS  Google Scholar 

  143. Brinker CJ, Hurd AJ (1994) Fundamentals of sol-gel dip-coating. J Phys III 4(7):1231–1242

    Google Scholar 

  144. Pavlidou S, Papaspyrides CD (2008) A review on polymer–layered silicate nanocomposites. Prog Polym Sci 33(12):1119–1198

    Article  CAS  Google Scholar 

  145. Erceg M, Jozić D, Banovac I, Perinović S, Bernstorff S (2014) Preparation and characterization of melt intercalated poly (ethylene oxide)/lithium montmorillonite nanocomposites. Thermochimica Acta 579:86–92

    Article  CAS  Google Scholar 

  146. Thakur AK, Pradhan DK, Samantaray BK, Choudhary RN (2006) Studies on an ionically conducting polymer nanocomposite. J Power Sources 159(1):272–276

    Article  CAS  Google Scholar 

  147. Yoon HK, Chung WS, Jo NJ (2004) Study on ionic transport mechanism and interactions between salt and polymer chain in PAN based solid polymer electrolytes containing LiCF3SO3. Electrochimica Acta 50(2):289–293

    Article  CAS  Google Scholar 

  148. Hashmi SA, Chandra S (1995) Experimental investigations on a sodium-ion-conducting polymer electrolyte based on poly (ethylene oxide) complexed with NaPF6. Mater Sci Eng B 34(1):18–26

    Article  Google Scholar 

  149. Chandra A, Agrawal RC, Mahipal YK (2009) Ion transport property studies on PEO-PVP blended solid polymer electrolyte membranes. J Phys D Appl Phys 42(13):135107

    Article  CAS  Google Scholar 

  150. Kumar KK, Ravi M, Pavani Y, Bhavani S, Sharma AK, Rao VN (2011) Investigations on the effect of complexation of NaF salt with polymer blend (PEO/PVP) electrolytes on ionic conductivity and optical energy band gaps. Phys B Condens Matter 406(9):1706–1712

    Article  CAS  Google Scholar 

  151. Liu W, Liu N, Sun J, Hsu PC, Li Y, Lee HW, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15(4):2740–2745

    Article  CAS  Google Scholar 

  152. Pradeepa P, Edwinraj S, Prabhu MR (2015) Effects of ceramic filler in poly (vinyl chloride)/poly (ethyl methacrylate) based polymer blend electrolytes. Chin Chem Lett 26(9):1191–1196

    Article  CAS  Google Scholar 

  153. Mohapatra SR, Thakur AK, Choudhary RNP (2008) Studies on PEO-based sodium ion conducting composite polymer films. Ionics 14(3):255–262

    Article  CAS  Google Scholar 

  154. Huang B, Wang Z, Chen L, Xue R, Wang F (1996) The mechanism of lithium ion transport in polyacrylonitrile-based polymer electrolytes. Solid State Ionics 91(3):279–284

    Article  CAS  Google Scholar 

  155. Moreno M, Quijada R, Santa Ana MA, Benavente E, Gomez-Romero P, González G (2011) Electrical and mechanical properties of poly (ethylene oxide)/intercalated clay polymer electrolyte. Electrochimica Acta 58:112–118

    Article  CAS  Google Scholar 

  156. Shukla N, Thakur AK (2009) Role of salt concentration on conductivity optimization and structural phase separation in a solid polymer electrolyte based on PMMA-LiClO4. Ionics 15(3):357–367

    Article  CAS  Google Scholar 

  157. Stoeva Z, Martin-Litas I, Staunton E, Andreev YG, Bruce PG (2003) Ionic conductivity in the crystalline polymer electrolytes PEO6: LiXF6, X = P, As, Sb. J Am Chem Soc 125(15):4619–4626

    Article  CAS  Google Scholar 

  158. Leo CJ, Rao GS, Chowdari BVR (2002) Studies on plasticized PEO–lithium triflate–ceramic filler composite electrolyte system. Solid State Ionics 148(1):159–171

    Article  CAS  Google Scholar 

  159. Rajendran S, Prabhu MR, Rani MU (2008) Ionic conduction in poly (vinyl chloride)/poly (ethyl methacrylate)-based polymer blend electrolytes complexed with different lithium salts. J Power Sources 180(2):880–883

    Article  CAS  Google Scholar 

  160. Sengwa RJ, Dhatarwal P, Choudhary S (2014) Role of preparation methods on the structural and dielectric properties of plasticized polymer blend electrolytes: correlation between ionic conductivity and dielectric parameters. Electrochimica Acta 142:359–370

    Article  CAS  Google Scholar 

  161. Mohapatra SR, Thakur AK, Choudhary RNP (2009) Effect of nanoscopic confinement on improvement in ion conduction and stability properties of an intercalated polymer nanocomposite electrolyte for energy storage applications. J Power Sources 191(2):601–613

    Article  CAS  Google Scholar 

  162. Sharma AL, Shukla N, Thakur AK (2008) Studies on structure property relationship in a polymer–clay nanocomposite film based on (PAN)8LiClO4. J Polym Sci B Polym Phys 46(23):2577–2592

    Article  CAS  Google Scholar 

  163. Mohapatra SR, Thakur AK, Choudhary RNP (2009) Vibrational spectroscopy analysis of ion conduction mechanism in dispersed phase polymer nanocomposites. J Polym Sci B Polym Phys 47(1):60–71

    Article  CAS  Google Scholar 

  164. Ramesh S, Ramesh K, Arof AK (2013) Fumed silica-doped poly (vinyl chloride)-poly (ethylene oxide)(PVC/PEO)-based polymer electrolyte for lithium ion battery. Int J Electrochem Sci 8:8348–8355

    CAS  Google Scholar 

  165. Li Z, Su G, Wang X, Gao D (2005) Micro-porous P (VDF-HFP)-based polymer electrolyte filled with Al2 O3 nanoparticles. Solid State Ionics 176(23):1903–1908

    Article  CAS  Google Scholar 

  166. Mohapatra SR, Thakur AK, Sakuma T (2010) Study of ion transport properties in Nano-YSZ dispersed polymer nanocomposite films using conductivity spectroscopy. J Phys Soc Jpn 79:169–172

    Article  Google Scholar 

  167. Janakiraman S, Surendran A, Ghosh S, Anandhan S, Venimadhav A (2016) Electroactive poly (vinylidene fluoride) fluoride separator for sodium ion battery with high coulombic efficiency. Solid State Ionics 292:130–135

    Article  CAS  Google Scholar 

  168. Lee L, Park SJ, Kim S (2013) Effect of nano-sized barium titanate addition on PEO/PVDF blend-based composite polymer electrolytes. Solid State Ionics 234:19–24

    Article  CAS  Google Scholar 

  169. Nunes-Pereira J, Kundu M, Gören A, Silva MM, Costa CM, Liu L, Lanceros-Méndez S (2016) Optimization of filler type within poly (vinylidene fluoride-co-trifluoroethylene) composite separator membranes for improved lithium-ion battery performance. Compos Part B 96:94–102

    Article  CAS  Google Scholar 

  170. Sengwa RJ, Dhatarwal P, Choudhary S (2015) Effects of plasticizer and nanofiller on the dielectric dispersion and relaxation behaviour of polymer blend based solid polymer electrolytes. Curr Appl Phys 15(2):135–143

    Article  Google Scholar 

  171. Arof AK, Shuhaimi NEA, Amirudin S, Kufian MZ, Woo HJ, Careem MA (2014) Polyacrylonitrile–lithium bis (oxalato) borate polymer electrolyte for electrical double layer capacitors. Polym Adv Technol 25(3):265–272

    Article  CAS  Google Scholar 

  172. Pitawala HMJC, Dissanayake MAKL, Seneviratne VA (2007) Combined effect of Al2O3 nano-fillers and EC plasticizer on ionic conductivity enhancement in the solid polymer electrolyte (PEO)9LiTf. Solid State Ionics 178(13):885–888

    Article  CAS  Google Scholar 

  173. Cznotka E, Jeschke S, Grünebaum M, Wiemhöfer HD (2016) Highly-fluorouspyrazolide-based lithium salt in PVdF-HFP as solid polymer electrolyte. Solid State Ionics 292:45–51

    Article  CAS  Google Scholar 

  174. Sengwa RJ, Choudhary S (2016) Structural dynamics and ionic conductivity of amorphous type plasticized solid polymer electrolytes. Indian J Pure Appl Phys (IJPAP) 54(3):159–169

    Google Scholar 

  175. Evans J, Vincent CA, Bruce PG (1987) Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28(13):2324–2328

    Article  CAS  Google Scholar 

  176. Stolarska M, Niedzicki L, Borkowska R, Zalewska A, Wieczorek W (2007) Structure, transport properties and interfacial stability of PVdF/HFP electrolytes containing modified inorganic filler. Electrochimica Acta 53(4):1512–1517

    Article  CAS  Google Scholar 

  177. Zugmann S, Fleischmann M, Amereller M, Gschwind RM, Wiemhöfer HD, Gores HJ (2011) Measurement of transference numbers for lithium ion electrolytes via four different methods, a comparative study. Electrochimica Acta 56(11):3926–3933

    Article  CAS  Google Scholar 

  178. Ghosh A, Wang C, Kofinas P (2010) Block copolymer solid battery electrolyte with high Li-ion transference number. J Electrochem Soc 157(7):A846–A849

    Article  CAS  Google Scholar 

  179. Chen X, Tang H, Putzeys T, Sniekers J, Wübbenhorst M, Binnemans K, Fransaer J, De Vos DE, Li Q, Luo J (2016) Guanidiniumnonaflate as a solid-state proton conductor. J Mater Chem A 4(31):12241–12252

    Article  CAS  Google Scholar 

  180. Luo J, Conrad O, Vankelecom IF (2013) Imidazolium methanesulfonate as a high temperature proton conductor. J Mater Chem A 1(6):2238–2247

    Article  CAS  Google Scholar 

  181. MacFarlane DR, Forsyth M (2001) Plastic crystal electrolyte materials: new perspectives on solid state ionics. Adv Mater 13(12–13):957–966

    Article  CAS  Google Scholar 

  182. Armand MB, Chabagno JM, Duclot M (1979) Fast Ion Transport in Solids: Electrodes and Electrolytes”, edited by Vashisha P., Mundy J.N., Shenoy G.K., North Holland, New York, p. 131.

  183. Müller-Plathe F, Van Gunsteren WF (1995) Computer simulation of a polymer electrolyte: lithium iodide in amorphous poly (ethylene oxide). J Chem Phys 103(11):4745–4756

    Article  Google Scholar 

  184. Cohen MH, Turnbull D (1959) Molecular transport in liquids and glasses. J Chem Phys 31(5):1164–1169

    Article  CAS  Google Scholar 

  185. Gibbs JH, Di Marzio EA (1958) Nature of the glass transition and the glassy state. J Chem Phys 28(3):373–383

    Article  CAS  Google Scholar 

  186. Bruce PG, Vincent CA (1993) Polymer electrolytes. J Chem Soc Faraday Trans 89(17):3187–3203

    Article  CAS  Google Scholar 

  187. Luo J, Hu J, Saak W, Beckhaus R, Wittstock G, Vankelecom IF, Agert C, Conrad O (2011) Protic ionic liquid and ionic melts prepared from methanesulfonic acid and 1H-1, 2, 4-triazole as high temperature PEMFC electrolytes. J Mater Chem 21(28):10426–10436

    Article  CAS  Google Scholar 

  188. Luo J, Conrad O, Vankelecom IF (2012) Physicochemical properties of phosphonium-based and ammonium-based protic ionic liquids. J Mater Chem 22(38):20574–20579

    Article  CAS  Google Scholar 

  189. Luo J, Van Tan T, Conrad O, Vankelecom IF (2012) 1H-1, 2, 4-triazole as solvent for imidazolium methanesulfonate. Phys Chem Chem Phys 14(32):11441–11447

    Article  CAS  Google Scholar 

  190. Williams ML, Landel RF, Ferry JD (1955) The temperature dependence of relaxation mechanisms in amorphous polymers and other glass-forming liquids. J Am Chem Soc 77(14):3701–3707

    Article  CAS  Google Scholar 

  191. Jing G, Zhen-Li G, Xiao-Li Y, Shu G, Zhong-Liang Z, Bo W (2012) Investigation of the free volume and ionic conducting mechanism of poly (ethylene oxide)-LiClO4 polymeric electrolyte by positron annihilating lifetime spectroscopy. Chinese Physics B 21(10):107803

    Article  CAS  Google Scholar 

  192. Angell CA (1986) Recent developments in fast ion transport in glassy and amorphous materials. Solid State Ionics 18–19:72–88

    Article  Google Scholar 

  193. Bruce PG (ed) (1995) Solid state electrochemistry. Cambridge University Press, Cambridge

    Google Scholar 

  194. Wieczorek W, Such K, Wyciślik H, Płocharski J (1989) Modifications of crystalline structure of PEO polymer electrolytes with ceramic additives. Solid State Ionics 36:255–257

    Article  CAS  Google Scholar 

  195. Nan CW, Smith DM (1991) A. C. Electrical properties of composite solid electrolytes. Mater Sci Eng B 10:99–106

    Article  Google Scholar 

  196. Landauer R (1952) The electrical resistance of binary metallic mixtures. J Appl Phys 23:779–784

    Article  CAS  Google Scholar 

  197. Wieczorek W, Such K, Florjanczyk Z, Stevens JR (1994) Polyether, polyacrylamide, LiClO4 composite electrolytes with enhanced conductivity. J Phys Chem 98(27):6840–6850

    Article  CAS  Google Scholar 

  198. Maxwell JC (1881) A treatise on electricity and magnetism, Vol. 1, 2nd edn. Clarendon Press, Oxford, p. 435

    Google Scholar 

  199. Shukla PK, Agrawal SL (1999) On the description of conductivity in PVA-based composite polymer electrolytes: EMT approach. Physica Status Solidi(a) 172(2):329–339

    Article  CAS  Google Scholar 

  200. Croce F, Persi L, Scrosati B, Serraino-Fiory F, Plichta E, Hendrickson MA (2001) Role of the ceramic fillers in enhancing the transport properties of composite polymer electrolytes. Electrochimica Acta 46(16):2457–2461

    Article  CAS  Google Scholar 

  201. Liang G, Xu J, Xu W, Shen X, Zhang H, Yao M (2011) Effect of filler-polymer interactions on the crystalline morphology of PEO-based solid polymer electrolytes by Y2O3 nano-fillers. Polym Compos 32(4):511–518

    Article  CAS  Google Scholar 

  202. Choudhary S, Sengwa RJ (2015) Structural and dielectric studies of amorphous and semicrystalline polymers blend-based nanocomposite electrolytes. J Appl Polym Sci 132(3)

  203. Tang C, Hackenberg K, Fu Q, Ajayan PM, Ardebili H (2012) High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Lett 12(3):1152–1156

    Article  CAS  Google Scholar 

  204. Shukla N, Thakur AK (2010) Ion transport model in exfoliated and intercalated polymer–clay nanocomposites. Solid State Ionics 181(19):921–932

    Article  CAS  Google Scholar 

  205. Sharma AL, Thakur AK (2011) AC conductivity and relaxation behavior in ion conducting polymer nanocomposite. Ionics 17(2):135–143

    Article  CAS  Google Scholar 

  206. Sharma AL, Thakur AK (2011) Polymer matrix–clay interaction mediated mechanism of electrical transport in exfoliated and intercalated polymer nanocomposites. J Mater Sci 46(6):1916–1931

    Article  CAS  Google Scholar 

  207. Sharma AL, Thakur AK (2015) Relaxation behavior in clay-reinforced polymer nanocomposites. Ionics 21(6):1561–1575

    Article  CAS  Google Scholar 

  208. Li W, Xing Y, Wu Y, Wang J, Chen L, Yang G, Tang B (2015) Study the effect of ion-complex on the properties of composite gel polymer electrolyte based on electrospun PVdF nanofibrous membrane. Electrochimica Acta 151:289–296

    Article  CAS  Google Scholar 

  209. Pandey GP, Hashmi SA (2013) Solid-state supercapacitors with ionic liquid based gel polymer electrolyte: effect of lithium salt addition. J Power Sources 243:211–218

    Article  CAS  Google Scholar 

  210. Ramesh S, Winie T, Arof AK (2007) Investigation of mechanical properties of polyvinyl chloride–polyethylene oxide (PVC–PEO) based polymer electrolytes for lithium polymer cells. Eur Polym J 43(5):1963–1968

    Article  CAS  Google Scholar 

  211. Kim CS, Oh SM (2002) Spectroscopic and electrochemical studies of PMMA based gel polymer electrolytes modified with interpenetrating networks. J Power Sources 109:98–104

    Article  CAS  Google Scholar 

  212. Ajji A (1995) Morphology and mechanical properties of virgin and recycled polyethylene/polyvinyl chloride blends. Polym Eng Sci 35:64–71

    Article  CAS  Google Scholar 

  213. Leo CJ, Thakur AK, Rao GS, Chowdari BVR (2003) Effect of glass–ceramic filler on properties of polyethylene oxide–LiCF3SO3 complex. J Power Sources 115(2):295–304

    Article  CAS  Google Scholar 

  214. Bhatt C, Swaroop R, Arya A, Sharma AL (2015) Effect of Nano-filler on the properties of polymer nanocomposite films of PEO/PAN complexed with NaPF6. J Mater Sci Eng B 5(11–12):418–434

    CAS  Google Scholar 

  215. Mindemark J, Sun B, Törmä E, Brandell D (2015) High-performance solid polymer electrolytes for lithium batteries operational at ambient temperature. J Power Sources 298:166–170

    Article  CAS  Google Scholar 

  216. Nimah YL, Cheng MY, Cheng JH, Rick J, Hwang BJ (2015) Solid-state polymer nanocomposite electrolyte of TiO2/PEO/NaClO4 for sodium ion batteries. J Power Sources 278:375–381

    Article  CAS  Google Scholar 

  217. Ibrahim S, Yassin MM, Ahmad R, Johan MR (2011) Effects of various LiPF6 salt concentrations on PEO-based solid polymer electrolytes 17(5):399–405

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. L. Sharma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arya, A., Sharma, A.L. Polymer electrolytes for lithium ion batteries: a critical study. Ionics 23, 497–540 (2017). https://doi.org/10.1007/s11581-016-1908-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1908-6

Keywords

Navigation