Skip to main content
Log in

An investigation on the unsatisfactory rate capability of spherical LiNi1/3Co1/3Mn1/3O2 particles prepared by using Na2CO3 as a precipitant

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

Spherical LiNi1/3Co1/3Mn1/3O2 particles were successfully synthesized using Na2CO3 as a precipitant. Electrochemical measurements indicate that the as-synthesized spherical particles deliver a high reversible capacity of above 180 mAh g−1 at 0.1 C in the voltage range of 2.8–4.4 V and display an excellent cyclic performance at 0.5 C. However, unsatisfactory rate capability was detected for the as-prepared spherical particles. The reason for the unsatisfactory rate capability was investigated through a comparison of the properties of the as-synthesized spherical particles versus the ball-milled samples via a combination of specific surface areas test, electronic conductivity measurement, and electrochemical impedance spectroscopy. The results show that both the rate capabilities of cathode materials and the electronic conductivities of the mixtures of active material, conductive additive, and binder are highly improved when the secondary spherical particles were broken, indicating that the poor electronic conductivity of electrode caused by the large secondary spherical particles with a great amount of nano-pores is a significant factor for the unsatisfactory rate capability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lee MJ, Lee S, Oh P, Kim Y, Cho J (2014) High performance LiMn2O4 cathode materials grown with epitaxial layered nanostructure for Li-ion batteries. Nano Lett 2:993–999

    Article  Google Scholar 

  2. Kim DK, Muralidharan P, Lee HW, Ruffo R, Yang Y, Chan CK, Peng H, Huggins RA, Cui Y (2008) Spinel LiMn2O4nanorods as lithium ion battery cathodes. Nano Lett 8:3948–3952

    Article  CAS  Google Scholar 

  3. Yang HZ, Liu PX, Chen QL, Liu XW, Lu YW, Xie SF, Ni L, Wu XY, Peng MY, Chen YB, Tang YF, Chen YF (2014) Fabrication and characteristics of high-capacity LiNi0.8Co0.15Al0.05O2 with monodisperse yolk–shell spherical precursors by a facile method. RSC Adv 4:35522–35527

    Article  CAS  Google Scholar 

  4. Wu NT, Wu H, Yuan W, Liu SJ, Liao JY, Zhang Y (2015) Facile synthesis of one-dimensional LiNi0.8Co0.15Al0.05O2 microrods as advanced cathode materials for lithium ion batteries. J Mater Chem A 3:13648–13652

    Article  CAS  Google Scholar 

  5. Park YJ, Roh KC, Shin W, Lee J (2013) Novel morphology-controlled synthesis of homogeneous LiFePO4 for Li-ion batteries using an organic phosphate source. RSC Adv 3:14263–14266

    Article  CAS  Google Scholar 

  6. Rosaiah P, Hussain OM (2014) Microscopic and spectroscopic properties of hydrothermally synthesized nano-crystalline LiFePO4 cathode material. J Alloys Compd 614:13–19

    Article  CAS  Google Scholar 

  7. Ramar V, Balaya P (2013) Enhancing the electrochemical kinetics of high voltage olivine LiMnPO4 by isovalentcooping. Phys Chem 15:17240–17249

    CAS  Google Scholar 

  8. Kang J, Song J, Kim S, Gim J, Jo J, Mathew V, Hanb J, Kim J (2013) A high voltage LiMnPO4-LiMn2O4 nanocomposite cathode synthesized by a one-pot pyro synthesis for Li-ion batteries. RSC Adv 3:25640–25643

    Article  CAS  Google Scholar 

  9. Ohzuku T, Makimura Y (2001) Layered lithium insertion material of LiCo1/3Ni1/3Mn1/3O2 for lithium-ion batteries. Chem Lett 30:642–643

    Article  Google Scholar 

  10. Xie J, Huang X, Zhu ZB, Dai ZH (2010) Hydrothermal synthesis of LiNi1/3Co1/3Mn1/3O2 for lithium rechargeable batteries. Ceram Int 36:2485–2487

    Article  Google Scholar 

  11. Shi SJ, Tu JP, Mai YJ, Zhang YQ, Tang YY, Wang XL (2012) Structure and electrochemical performance of CaF2 coated LiNi1/3Co1/3Mn1/3O2 cathode material for Li-ion batteries. Electrochim Acta 83:105–112

    Article  CAS  Google Scholar 

  12. Shi SJ, Tu JP, Tang YY, Liu XY, Zhang YQ, Wang XL, Gu CD (2013) Enhanced electrochemical performance of LiF-modified LiNi1/3Co1/3Mn1/3O2 cathode material for Li-ion batteries. J Power Sources 225:338–346

    Article  CAS  Google Scholar 

  13. Lin B, Wen ZY, Gu ZH, Huang SH (2008) Morphology and electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathode material by a slurry spray drying method. J Power Sources 175:564–569

    Article  CAS  Google Scholar 

  14. Zheng JL, Zhou W, Guo L (2015) Combustion synthesis of LiNi1/3Co1/3Mn1/3O2 powders with enhanced electrochemical performance in LIBs. J Alloys Compd 635:207–212

    Article  CAS  Google Scholar 

  15. Riley LA, Van Atta S, Cavanagh AS, Yan Y, George SM, Liu P, Dillon AC, Lee SH (2011) Electrochemical effects of ALD surface modification on combustion synthesized LiNi1/3Mn1/3Co1/3O2 as a layered-cathode material. J Power Sources 196:3317–3324

    Article  CAS  Google Scholar 

  16. Lu Y, Yong F, Guo XX (2015) A new method for the synthesis of LiNi1/3Co1/3Mn1/3O2 from waste lithium ion batteries. RSC Adv 5:44107–44114

    Article  Google Scholar 

  17. Li JL, Yao RM, Cao CB (2014) LiNi1/3Co1/3Mn1/3O2 nanoplates with {010} active planes exposing prepared in polyol medium as a high-performance cathode for Li-ion battery. ACS Appl MaterInter 6:5075–5082

    Article  CAS  Google Scholar 

  18. Wu F, Wang M, Su YF, Bao LY, Chen S (2010) A novel method for synthesis of layered LiNi1/3Mn1/3Co1/3O2 as cathode material for lithium-ion battery. J Power Sources 195:2362–2367

    Article  CAS  Google Scholar 

  19. Lee MH, Kang YJ, Myung ST, Sun YK (2004) Synthetic optimization of LiNi1/3Co1/3Mn1/3O2 via co-precipitation. Electrochim Acta 50:939–944

    Article  CAS  Google Scholar 

  20. Yang SY, Wang XY, Yang XK, Liu L, Liu ZL, Bai YS, Wang YP (2012) Influence of Li source on tap density and high rate cycling performance of spherical Li[Ni1/3Co1/3Mn1/3]O2 for advanced lithium-ion batteries. J Solid State Electrochem 16:1229–1237

    Article  CAS  Google Scholar 

  21. Bommel A, Dahn JR (2009) Analysis of the growth mechanism of coprecipitated spherical and dense nickel, manganese, and cobalt-containing hydroxides in the presence of aqueous ammonia. Chem Mater 21:1500–1503

    Article  Google Scholar 

  22. Ren HB, Huang YH, Wang YH, Li ZJ, Cai P, Peng ZH, Zhou YH (2009) Effects of different carbonate precipitators on LiNi1/3Co1/3Mn1/3O2 morphology and electrochemical performance. Mater Chem Phys 117:41–45

    Article  CAS  Google Scholar 

  23. Wang J, Yao XY, Zhou XF, Liu ZP (2011) Synthesis and electrochemical properties of layered lithium transition metal oxides. J Mater Chem 21:2544–2549

    Article  CAS  Google Scholar 

  24. Deng H, Belharouak I, Wu H, Dambournet D, Amine K (2010) Effect of cobalt incorporation and lithium enrichment in lithium nickel manganese oxides. J Electrochem Soc 157:A776–A781

    Article  CAS  Google Scholar 

  25. Kim JH, Park CW, Sun YK (2003) Synthesis and electrochemical behavior of Li[Li0.1Ni0.35-x/2CoxMn0.55-x/2]O2 cathode materials. Solid State Ionics 164:43–49

    Article  CAS  Google Scholar 

  26. Noh HJ, Youn S, Yoon CS, Sun YK (2013) Comparison of the structural and electrochemical properties of layered Li[NixCoyMnz]O2 (x = 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries. J Power Sources 233:121–130

    Article  CAS  Google Scholar 

  27. Guo HJ, Liang RF, Li XH, Zhang XM, Wang ZX, Peng WJ, Wang Z (2007) Effect of calcination temperature on characteristics of LiNi1/3Co1/3Mn1/3O2 cathode for lithium ion batteries. Trans Nonferrous Met Soc China 17:1307–1311

    Article  CAS  Google Scholar 

  28. Mei T, Zhu YC, Tang KB, Qian YT (2012) Synchronously synthesized core-shell LiNi1/3Co1/3Mn1/3O2/carbon nanocomposites as cathode materials for high performance lithium ion batteries. RSC Adv 2:12886–12891

    Article  CAS  Google Scholar 

  29. Li L, Feng CQ, Zheng H, He PX, Wang JZ (2014) Synthesis and electrochemical properties of LiNi1/3Co1/3Mn1/3O2 cathode material. J Electron Mater 43:3508–3513

    Article  CAS  Google Scholar 

  30. Shaju KM, Subba Rao GV, Chowdari BVR (2002) Performance of layered Li (Ni1/3Co1/3Mn1/3)O2 as cathode for Li-ion batteries. Electrochim Acta 48:145–151

    Article  CAS  Google Scholar 

  31. Gang P, Yang G, Zhou HS (2012) Lithium diffusion behavior and improved high rate capacity of LiNi1/3Co1/3Mn1/3O2 as cathode material for lithium batteries. Solid State Ionics 207:50–56

    Article  Google Scholar 

  32. Manikandan P, Periasamy P (2014) Novel mixed hydroxy-carbonate precursor assisted synthetic technique for LiNi1/3Mn1/3Co1/3O2 cathode materials. Mater Res Bull 50:132–140

    Article  CAS  Google Scholar 

  33. Wang L, Zhao JS, He XM, Gao J, Li JJ, Wan CR, Jiang CY (2012) Electrochemical impedance spectroscopy (EIS) study of LiNi1/3Co1/3Mn1/3O2 for Li-ion batteries. Int J Electrochem Sci 7:345–353

    CAS  Google Scholar 

  34. Illango PR, Subburaj T (2015) Physical and electrochemical performance of LiNi1/3Co1/3Mn1/3O2 cathodes coated by Sb2O3 using a sol-gel process. Mater Chem Phys 3:45–51

    Article  Google Scholar 

  35. Xu JT, Chou SL, Dou SX (2013) The effect of different binders on electrochemical properties of LiNi1/3Mn1/3C1/3O2 cathode material in lithium ion batteries. J Power Sources 225:172–178

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Sichuan Provincial Key Technology R&D Program (2013GZX0145-3). We are indebted to Margaret Yau for her kind help and fruitful discussions.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Heng Liu or Guobiao Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Z., Huang, Q., Liu, H. et al. An investigation on the unsatisfactory rate capability of spherical LiNi1/3Co1/3Mn1/3O2 particles prepared by using Na2CO3 as a precipitant. Ionics 22, 1801–1809 (2016). https://doi.org/10.1007/s11581-016-1719-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-016-1719-9

Keywords

Navigation