Skip to main content
Log in

Utility of gold nanoparticles/silica modified electrode for rapid selective determination of mebeverine in micellar medium: comparative discussion and application in human serum

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

A novel electrochemical sensor for the selective determination of mebeverine hydrochloride (MEB) in drug substance, products, and human plasma was introduced. The prepared nanoparticle sensor was based on a carbon paste electrode chemically modified with silica and gold nanoparticles. The surface morphology of the modified electrode was characterized by scanning electron microscope. Several parameters such as pH, scan rate, and accumulation time were optimized in order to determine the best conditions for analysis. A good linear response was obtained in the range of 4.0 × 10−8−1 × 10−5 mol L−1 with detection limit of 1.5 × 10−9 mol L−1. The obtained results are in good agreement with those obtained by official method. The method was applied for determination of mebeverine hydrochloride in different pharmaceutical dosage forms containing MEB alone or in mixtures with sulpiride or chlordiazepoxide as well as in human plasma. The developed method was simple, rapid, economic, and challenging to green chemistry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Sweetman SC (2007) Martindale: the complete drug reference, 35th edn. The Pharmaceutical Press, London

    Google Scholar 

  2. British Pharmacopoeia (2014) Vol. I, Her Majesty’s Stationery Office, London, United Kingdom

  3. Zayed SI (2005) Anal Sci 21:985–989

    Article  CAS  Google Scholar 

  4. Shama SAI, Amin AS (2004) Spectrochim Acta A Mol Biomol Spectrosc 60:1769–1774

    Article  CAS  Google Scholar 

  5. Walash M, Sharaf El-Din M, El-Enany N, Eid M, Shalan S (2010) J Fluoresc 20:1275–1285

    Article  CAS  Google Scholar 

  6. Ibrahim H, Issa YM, Abu-Shawish HM (2007) J Pharm Biomed Anal 44:8–15

    Article  CAS  Google Scholar 

  7. Perrin C, Vander Heyden Y, Maftouh M, Massart DL (2001) Electrophoresis 22:3203–3215

    Article  CAS  Google Scholar 

  8. Ibrahim H, Abu-Shawish HM, Issa YM (2005) J Pharm Biomed Anal 36:1053–1061

    Article  CAS  Google Scholar 

  9. Ali TA, Mohamed GG, Omar MM, Abdrabou VN (2015) Int J Electrochem Sci 10:2439–2454

    CAS  Google Scholar 

  10. Elzanfaly ES, Hegazy MA, Saad SS, Salem MY, Abd El Fattah LE (2015) J Sep Sci 38:757–763

    Article  CAS  Google Scholar 

  11. Elmasry MS, Blagbrough IS, Rowan MG, Saleh HM, Kheir AA, Rogers PJ, Pharm J (2011) Biomed Anal 54:646–652

    Article  CAS  Google Scholar 

  12. Walash MI, Sharaf K, El-Din MM, El-Enany NM, Eid MI, Shalan SM (2012) Chem Cent J 6:13

    Article  CAS  Google Scholar 

  13. Radwan MA, Abdine HH, Aboul-Enein HY (2006) Biomed Chromatogr 20:211–216

    Article  CAS  Google Scholar 

  14. Souri E, Negahban A, Aghdami AN (2014) Pharm Sci 9:199–206

    CAS  Google Scholar 

  15. Zen JM, Senthil Kumar A, Tsai DM (2003) Electroanalysis 15:1073–1087

    Article  CAS  Google Scholar 

  16. Dryhurst G, McAllister DL (1984) G Dryhurst, DL McAllister, PT Kissinger, WR Heineman (eds.), “Carbon electrodes”, in laboratory techniques in electroanalytical chemistry, Marcel Dekker Inc., New York, 289

  17. Wang J (2000) Analytical electrochemistry, 2nd edn. Wiley-VCH, New York

    Book  Google Scholar 

  18. Shams E, Babaei A, Taheri AR, Kooshki M (2009) Bioelectrochemistry 75:83–88

    Article  CAS  Google Scholar 

  19. Yang RT (1999) Adsorbent: fundamentals and application. John Wiley, New York, pp 131–134

    Google Scholar 

  20. Keller R (1979) The Chemistry of Silica, John Wiley, New York

  21. Yantasee W, Lin Y, Zemanian TS, Fryxell GE (2003) Analyst 128:467–472

    Article  CAS  Google Scholar 

  22. Sayen S, Gerardin C, Rodehuser L, Walcarius A (2003) Electroanalysis 15:422–430

    Article  CAS  Google Scholar 

  23. Yantasee W, Lin Y, Fryxell GE (2003) B J Busche Anal Chim Acta 502:207–212

    Article  Google Scholar 

  24. Marino G, Bergamini MF, Teixeira MFS, Cavalheiro ETG (2003) Talanta 59:1021–1028

    Article  CAS  Google Scholar 

  25. Huang W, Qian W, Jain PK, El-Sayed MA (2007) Nano Lett 7:3227–3234

    Article  CAS  Google Scholar 

  26. Khatri OP, Murase K, Sugimura H (2008) Langmuir 24:3787–3793

    Article  CAS  Google Scholar 

  27. de Oliveira MK, Thaís dos Santos CC, Dinelli RL, Marinho ZJ, Lima CR, Bogado LA (2013) Polyhedron 50:410–417

    Article  Google Scholar 

  28. Li F, Song JX, Gao DM, Zhang QX, Han DX, Niu L (2009) Talanta 79:845–850

    Article  CAS  Google Scholar 

  29. Atta NF, Galal A, Abu-Attia FM, Azab SM (2011) J Material Chem 21:13015–13024

    Article  CAS  Google Scholar 

  30. Atta NF, Galal A, Azab SM (2012) Anal Bioanal Chem 404:1661–1672

    Article  CAS  Google Scholar 

  31. Atta NF, Galal A, Azab SM (2011) Analyst 136:4682–4681

    Article  CAS  Google Scholar 

  32. Joseph E, Reynolds III, Josowicz M, Russell BV, Kyril MS, (2013) Chem Commun 49:7788–7790

  33. Atta NF, Galal A, Abu-Attia FM, Azab SM (2010) J Electrochem Soc 157:F116–F123

    Article  CAS  Google Scholar 

  34. Laviron E (1979) J Electroanal Chem 101:19–28

    Article  CAS  Google Scholar 

  35. Gushikem Y, Rosatto SS, Braz J (2001) J Braz Chem Soc 12:695–705

    Article  CAS  Google Scholar 

  36. Bard AJ, Faulkner LR (2001) Electrochemical methods: fundamentals and applications, 2nd edn. Wiley, New York

    Google Scholar 

  37. John R, Smith L, Masheder D (1976) J Chem Soc Perkin Trans 2:47–51

    Google Scholar 

  38. Siddappa K, Mallikarjun M, Reddy T, Tambe M (2008) J Chin Chem Soc 55:1062–1068

    Article  CAS  Google Scholar 

  39. Hoh GLK, Barlow DO, Chadwick AF, Lake DB, Sheeran SR (1963) J Am Oil Chem Soc 40:268–271

    Article  CAS  Google Scholar 

  40. Majidia MR, Jouybanb A, Zeynali KA (2006) J Electroanal Chem 589:32–37

    Article  Google Scholar 

  41. Atta NF, Darwish SA, Khalil SE, Galal A (2007) Talanta 72:1438–1445

    Article  CAS  Google Scholar 

  42. Gosser DK (1993) Cyclic voltammetry, simulation and analysis of reaction mechanism. Wiley-VCH, New York

    Google Scholar 

  43. Chen X, Li Q, Yu S, Lin B, Wu K (2012) Electrochim Acta 81:106–111

    Article  CAS  Google Scholar 

  44. (2005) International conference on harmonization (ICH) harmonized tripartite guideline Validation of analytical procedures: text and methodology Q2 (R1), ICH, Geneva

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nahla N. Salama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salama, N.N., Zaazaa, H.E., Azab, S.M. et al. Utility of gold nanoparticles/silica modified electrode for rapid selective determination of mebeverine in micellar medium: comparative discussion and application in human serum. Ionics 22, 957–966 (2016). https://doi.org/10.1007/s11581-015-1602-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1602-0

Keyword

Navigation