Skip to main content
Log in

A high-voltage lithium-ion battery prepared using a Sn-decorated reduced graphene oxide anode and a LiNi0.5Mn1.5O4 cathode

  • Original Paper
  • Published:
Ionics Aims and scope Submit manuscript

Abstract

This paper describes the preparation and characterization of a high-voltage lithium-ion battery based on Sn-decorated reduced graphene oxide and LiNi0.5Mn1.5O4 as the anode and cathode active materials, respectively. The Sn-decorated reduced graphene oxide is prepared using a microwave-assisted hydrothermal synthesis method followed by reduction at high temperature of a mixture of (C6H5)2SnCl2 and graphene oxide. The so-obtained anode material is characterized by thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, and electron diffraction spectroscopy. The LiNi0.5Mn1.5O4 is a commercially available product. The two materials are used to prepare composite electrodes, and their electrochemical properties are investigated by galvanostatic charge/discharge cycles at various current densities in lithium cells. The electrodes are then used to assemble a high-voltage lithium-ion cell, and the cell is tested to evaluate its performance as a function of discharge rate and cycle number.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Kim D, Kang S-H, Balasubramanian M, Johnson CS (2010) High-energy and high-power Li-rich nickel manganese oxide electrode materials. Electrochem Communic 12:1618–1621

    Article  CAS  Google Scholar 

  2. Kraytsberg A, Ein Eli Y (2012) Higher, stronger, better. A review of 5 volt cathode materials for advanced lithium-ion batteries. Adv Energy Mater 2:922–939

    Article  CAS  Google Scholar 

  3. Wachtler M, Besenhard JO, Winter M (2001) Tin and tin-based intermetallics as new anode materials for lithium-ion cells. J Power Sources 94:189–193

    Article  CAS  Google Scholar 

  4. Zhong Q, Bonakdarpour A, Zhang M, Gao MY, Dahn JR (1997) Synthesis and electrochemistry of LiNixMn2-xO4. J Electrochem Soc 144:205–213

    Article  CAS  Google Scholar 

  5. Park JS, Roh KC, Lee J-W, Song K, Kim Y-I, Kang Y-M (2013) Structurally stabilized LiNi0.5Mn1.5O4 with enhanced electrochemical properties through nitric acid treatment. J Power Sources 230:138–142

    Article  CAS  Google Scholar 

  6. Okumura T, Shikano M, Kobayashi HJ (2013) Contribution of oxygen partial density of state on lithium intercalation/de-intercalation process in LixNi0.5Mn1.5O4 spinel oxides. J Power Sources 244:544–547

    Article  CAS  Google Scholar 

  7. Bhaskar NA, Dixon D, Yavuz M, Nikolowski K, Lu L, Eichel R-A, Ehrenberg H (2014) Improving the rate capability of high voltage lithium-ion battery cathode material LiNi0.5Mn1.5O4 by ruthenium doping. J Power Sources 267:533–541

    Article  Google Scholar 

  8. Liu D, Trottier J, Charest P, Frechette J, Guerfi A, Mauger A, Julien CM, Zaghib K (2012) Effect of nano LiFePO4 coating on LiMn1.5Ni0.5O4 5V cathode for lithium ion batteries. J Power Sources 204:127–132

    Article  CAS  Google Scholar 

  9. Zhu Z, Yan H, Zhang D, Li W, Lu Q (2013) Preparation of 4.7 V cathode material LiNi0.5Mn1.5O4 by an oxalic acid-pretreated solid-state method for lithium-ion secondary battery. J Power Sources 224:13–19

    Article  CAS  Google Scholar 

  10. Liu D, Zhu W, Trottier J, Gagnon C, Barray F, Guerfi A, Mauger A, Groult H, Julien CM, Goodenough JB, Zaghib K (2014) Spinel materials for high-voltage cathodes in Li-ion batteries. RSC Adv 4:154–167

    Article  CAS  Google Scholar 

  11. Kim JH, Pieczonka NPW, Yang L (2014) Challenges and approaches for high-voltage spinel lithium-ion batteries. Chem Phys Chem 15:1940–1954

    CAS  Google Scholar 

  12. Yang J, Wachtler M, Winter M, Besenhard JO (1999) Sub-microcrystalline Sn and Sn-SnSb powders as lithium storage materials for lithium-ion batteries. Electrochem Solid-State Lett 2:161–163

    Article  CAS  Google Scholar 

  13. Zhao XB, Cao GS, Lv CP, Zhang LJ, Hu SH, Zhu TJ, Zhou BC (2001) Electrochemical properties of some Sb or Te based alloys for candidate anode materials of lithium-ion batteries. J Alloys Comp 315:265–269

    Article  CAS  Google Scholar 

  14. Hamon Y, Brousse T, Jousse F, Topart P, Buvat P, Schleich DM (2001) Aluminum negative electrode in lithium ion batteries. J Power Sources 97–98:185–187

    Article  Google Scholar 

  15. Weydanz WJ, Wohlfahrt-Mehrens M, Huggins RA (1999) A room temperature study of the binary lithium–silicon and the ternary lithium–chromium–silicon system for use in rechargeable lithium batteries. J Power Sources 81–82:237–242

    Article  Google Scholar 

  16. Wang B, Luo B, Li XL, Zhi LJ (2012) The dimensionality of Sn anodes in Li-ion batteries. Mater Today 15:544–552

    Article  CAS  Google Scholar 

  17. Shiva K, Jayaramulu K, Rajendra HB, Maji TK, Bhattacharyya AJ (2014) In-situ stabilization of tin nanoparticles in porous carbon matrix derived from metal organic framework: high capacity and high rate capability anodes for lithium-ion batteries. Z Anorg Allg Chem 640:1115–1118

    Article  CAS  Google Scholar 

  18. Fan XL, Shao J, Xiao XZ, Wang XH, Li SQ, Ge HW, Chen LX, Wang CS (2014) In situ synthesis of SnO2 nanoparticles encapsulated in micro/mesoporous carbon foam as a high-performance anode material for lithium ion batteries. J Mater Chem A 2:18367–18374

    Article  CAS  Google Scholar 

  19. Nithya C, Gopukumar S (2013) Reduced graphite oxide/nano Sn: a superior composite anode material for rechargeable lithium-ion batteries. ChemSusChem 6:898–904

    Article  CAS  Google Scholar 

  20. Boukamp BA, Lesh GC, Huggins RA (1981) All-solid lithium electrodes with mixed conductor matrix. J Electrochem Soc 128:725–729

    Article  CAS  Google Scholar 

  21. Takamura T, Endo K, Fu L, Wu Y, Lee K, Matsumoto T (2007) Identification of nano-sized holes by TEM in the graphene layer of graphite and the high rate discharge capability of Li-ion battery anodes. Electrochim Acta 53:1055–1061

    Article  CAS  Google Scholar 

  22. Novoselov KS, Jiang D, Schedin F, Booth TJ, Khotkevich VV, Morozov SV, Geim AK (2005) Two-dimensional atomic crystals. Proc Natl Acad Sci U S A 102:10451–10453

    Article  CAS  Google Scholar 

  23. Wan D, Yang C, Lin T, Tang Y, Zhou M, Zhong Y, Huang F, Lin J (2012) Low-temperature aluminum reduction of graphene oxide, electrical properties, surface wettability, and energy storage applications. ACS Nano 6:9068–9078

    Article  CAS  Google Scholar 

  24. Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyen ST, Ruoff RS (2007) Synthesis of graphene-based nanopapers via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565

    Article  CAS  Google Scholar 

  25. Wang G, Yang J, Park J, Gou X, Wang B, Liu H (2008) Facile synthesis and characterization of graphene nanopapers. J Phys Chem C 112:8192–8195

    Article  CAS  Google Scholar 

  26. Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8:1679–1682

    Article  CAS  Google Scholar 

  27. Fan ZJ, Wang K, Yan J, Wei T, Zhi LJ, Feng J, Ren YM, Song LP, Wei F (2011) Facile synthesis of graphene nanopapers via Fe reduction of exfoliated graphite oxide. ACS Nano 5:191–198

    Article  CAS  Google Scholar 

  28. Fan ZJ, Wang K, Wei T, Yan J, Song LP, Shao B (2010) An environmentally friendly and efficient route for the reduction of graphene oxide by aluminum powder. Carbon 48:1670–1692

    Article  Google Scholar 

  29. Zhu YW, Stoller MD, Cai WW, Velamakanni A, Piner RD, Chen D (2010) Exfoliation of graphite oxide in propylene carbonate and thermal reduction of the resulting graphene oxide platelets. ACS Nano 4:1227–1233

    Article  CAS  Google Scholar 

  30. Compton OC, Jain B, Dikin DA, Abouimrane A, Amine K, Nguyen ST (2011) Chemically active reduced graphene oxide with tunable C/O ratios. ACS Nano 5:4380–4391

    Article  CAS  Google Scholar 

  31. Wen ZH, Cui SM, Kim HJ, Mao S, Yu KH, Lu GH, Pu HH, Mao O, Chen JH (2012) Binding Sn-based nanoparticles on graphene as the anode of rechargeable lithium ion batteries. J Mater Chem 22:3300–3306

    Article  CAS  Google Scholar 

  32. Yue WB, Yang S, Ren Y, Yang XJ (2013) In situ growth of Sn, SnO on graphene nanosheets and their application as anode materials for lithium-ion batteries. Electrochim Acta 92:412–420

    Article  CAS  Google Scholar 

  33. Sathish M, Mitani S, Tomai T (2012) Nanocrystalline tin compounds/graphene nanocomposite electrodes as anode for lithium-ion battery. J Solid State Chem 16:1767–1774

    CAS  Google Scholar 

  34. Chen SQ, Wang Y, Ahn H (2012) Microwave hydrothermal synthesis of high performance tin-graphene nanocomposites for lithium ion batteries. J Power Sources 216:22–27

    Article  CAS  Google Scholar 

  35. Liang SZ, Zhu XF, Lian PC (2011) Superior cycle performance of Sn@C/graphene nanocomposite as an anode material for lithium-ion batteries. J Solid State Chem 184:1400–1404

    Article  CAS  Google Scholar 

  36. Wang DN, Li XF, Yang JL, Wang JJ, Geng DS, Li RY, Cai M, Sham TK, Sun XL (2013) Hierarchical nanostructured core–shell Sn@C nanoparticles embedded in graphene nanosheets: spectroscopic view and their application in lithium ion batteries. Phys Chem Chem Phys 15:3535–3542

    Article  CAS  Google Scholar 

  37. Qin J, He C, Zhao N, Wang Z, Shi C, Liu E-Z, Li J (2014) Graphene networks anchored with Sn@graphene as lithium ion battery anode. ACS Nano 8:1728–1738

    Article  CAS  Google Scholar 

  38. Zou Y, Wang Y (2011) Sn@CNT nanostructures rooted in graphene with high and fast Li-storage capacities. ACS Nano 5:8108–8114

    Article  CAS  Google Scholar 

  39. Luo B, Wang B, Li XL, Jia YY, Liang MH, Zhi LJ (2012) Graphene-confined Sn nanosheets with enhanced lithium storage capability. Adv Mater 24:3538–3543

    Article  CAS  Google Scholar 

  40. Luo B, Wang B, Liang MH, Ning J, Li XL, Zhi LJ (2012) Reduced graphene oxide-mediated growth of uniform tin-core/carbon-sheath coaxial nanocables with enhanced lithium ion storage properties. Adv Mater 24:1405–1409

    Article  CAS  Google Scholar 

  41. Ji LW, Tan ZK, Kuykendall T, An EJ, Fu YB, Battaglia V, Zhang YG (2011) Multilayer nanoassembly of Sn-nanopillar arrays sandwiched between graphene layers for high capacity lithium storage. Energy Environ Sci 4:3611–3616

    Article  CAS  Google Scholar 

  42. Wang GX, Wang B, Wang XH, Park J, Dou SX, Ahn H, Kim K (2009) Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries. J Mater Chem 19:8378–8384

    Article  CAS  Google Scholar 

  43. Li YY, Li ZS, Shen PK (2013) Simultaneous formation of ultrahigh surface area and three-dimensional hierarchical porous graphene-like networks for fast and highly stable supercapacitors. Adv Mater 25:2474–2480

    Article  CAS  Google Scholar 

  44. Zhang WM, Hu JS, Guo YG, Zheng SF, Zhong LS, Song WG, Wan LJ (2008) Tin-nanoparticles encapsulated in elastic hollow carbon spheres for high-performance anode material in lithium-ion batteries. Adv Mater 20:1160–1165

    Article  CAS  Google Scholar 

  45. Xu YH, Liu Q, Zhu YJ, Liu YH, Langrock A, Zachariah MR, Wang CS (2013) Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Lett 13:470–474

    Article  CAS  Google Scholar 

  46. Su YZ, Li S, Wu DQ, Zhang F, Liang HW, Gao PF, Cheng C, Feng XL (2012) Two-dimensional carbon-coated graphene/metal oxide hybrids for enhanced lithium storage. ACS Nano 6:8349–8356

    Article  CAS  Google Scholar 

  47. Zhong C, Wang JZ, Chen ZX, Liu HK (2011) SnO2-graphene composite synthesized via an ultrafast and environmentally friendly microwave autoclave method and its use as a superior anode for lithium-ion batteries. J Phys Chem C 115:25115–25120

    Article  CAS  Google Scholar 

  48. Zhu X, Zhu Y, Murali S, Stoller MD, Ruoff RS (2011) Reduced graphene oxide/tin oxide composite as an enhanced anode material for lithium ion batteries prepared by homogenous coprecipitation. J Power Sources 196:6473–6477

    Article  CAS  Google Scholar 

  49. Harrison KL, Manthiram A (2011) Microwave-assisted solvothermal synthesis and characterization of metastable LiFe1−x(VO)xPO4 cathodes. Inorg Chem 50:3613–3620

    Article  CAS  Google Scholar 

  50. Yoon S, Manthiram A (2011) Microwave-hydrothermal synthesis of W0.4Mo0.6O3 and carbon-decorated WOx-MoO2 nanorod anodes for lithium ion batteries. J Mater Chem 21:4082–4085

    Article  CAS  Google Scholar 

  51. Birrozzi A, Raccichini R, Nobili F, Marinaro M, Tossici R, Marassi R (2014) High-stability graphene nano sheets/SnO2 composite anode for lithium ion batteries. Electrochim Acta 137:228–234

    Article  CAS  Google Scholar 

  52. Fukuda K, Kikuya K, Isono K, Yoshio M (1997) Foliated natural graphite as the anode material for rechargeable lithium-ion cells. J Power Sources 69:165–168

    Article  CAS  Google Scholar 

  53. Maroni F, Raccichini R, Birrozzi A, Carbonari G, Tossici R, Croce F, Marassi R, Nobili F (2014) Graphene/silicon nanocomposite anode with enhanced electrochemical stability for lithium-ion battery applications. J Power Sources 269:873–882

    Article  CAS  Google Scholar 

  54. Cote LJ, Cruz-Silva R, Huang J (2009) Flash reduction and patterning of graphite oxide and its polymer composite. J Am Chem Soc 131:11027–11032

    Article  CAS  Google Scholar 

  55. Reza-Azimi H, Rezaei M, Majidi F (2014) The non-isothermal degradation kinetics of St-MMA copolymers. Polym Degrad Stab 99:240–248

    Article  Google Scholar 

  56. Meschini I, Nobili F, Mancini M, Marassi R, Tossici R, Savoini A, Focarete ML, Croce F (2013) High-performance Sn@carbon nanocomposite anode for lithium batteries. J Power Sources 226:241–248

    Article  CAS  Google Scholar 

  57. Nobili F, Meschini I, Mancini M, Tossici R, Marassi R, Croce F (2013) High-performance Sn@carbon nanocomposite anode for lithium-ion batteries: lithium storage processes characterization and low-temperature behavior. Electrochim Acta 107:85–92

    Article  CAS  Google Scholar 

  58. Kaskhedikar NA, Maier J (2009) Lithium storage ion carbon nanostructures. Adv Mater 21:2664–2680

    Article  CAS  Google Scholar 

  59. Zheng T, McKinnon WR, Dahn JR (1996) Hysteresis during lithium insertion in hydrogen-containing carbons. J Electrochem Soc 143:2137–2145

    Article  CAS  Google Scholar 

  60. Botas C, Carriazo D, Singh G, Rojo T (2015) Sn– and SnO2–graphene flexible foams suitable as binder-free anodes for lithium ion batteries. J Mater Chem A 3:13402–13410

    Article  CAS  Google Scholar 

  61. Peukert W (1897) Über die Abhänigkeit der Kapazität von der Entladestromstärke bei Bleiakkumulatoren. Elektrotechnisch Z 27:287–288

    Google Scholar 

  62. Omar N, Van den Bossche P, Coosemans T, Van Mierlo J (2013) Peukert revisited-critical appraisal and need for modification for lithium-ion batteries. Energies 6:5625–5641

    Article  Google Scholar 

Download references

Acknowledgments

Part of this work is carried out within the activities “Ricerca Sistema Elettrico” funded through contributions to research and development by the Italian Ministry of Economic Development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pier Paolo Prosini.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prosini, P.P., Carewska, M., Tarquini, G. et al. A high-voltage lithium-ion battery prepared using a Sn-decorated reduced graphene oxide anode and a LiNi0.5Mn1.5O4 cathode. Ionics 22, 515–528 (2016). https://doi.org/10.1007/s11581-015-1577-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11581-015-1577-x

Keywords

Navigation